1. Single- and two-pollutant concentration-response functions for PM 2.5 and NO 2 for quantifying mortality burden in health impact assessments.
- Author
-
Chen X, Gehring U, Dyer GMC, Khomenko S, de Hoogh K, Tonne C, Tatah L, Vermeulen R, Khreis H, Nieuwenhuijsen M, and Hoek G
- Subjects
- Humans, Mortality, Environmental Exposure adverse effects, Particulate Matter analysis, Particulate Matter toxicity, Nitrogen Dioxide analysis, Nitrogen Dioxide toxicity, Air Pollutants analysis, Air Pollutants toxicity, Health Impact Assessment
- Abstract
Objective: Health Impact Assessments (HIAs) for air pollutant mixtures are challenging because risk estimates are primarily derived from single-pollutant models. Combining risk estimates from multiple pollutants requires new approaches, as a simple addition of single pollutant risk estimates from correlated air pollutants may result in double counting. We investigated approaches applying concentration-response functions (CRFs) from single- and two-pollutant models in HIAs, focusing on long-term exposure to particulate matter with a diameter less than 2.5 μm (PM
2.5 ) and nitrogen dioxide (NO2 ) and their associations with all-cause mortality., Methods: A systematic literature search of MEDLINE and EMBASE identified cohort studies employing single- and two-pollutant models of long-term exposure to PM2.5 and NO2 with all-cause mortality. Pooled CRFs were calculated through random-effects meta-analyses of risk estimates from single- and two-pollutant models. Coefficient differences were calculated by comparing single- and two-pollutant model estimates. Four approaches to estimating population-attributable fractions (PAFs) were compared: PM2.5 or NO2 single-pollutant models to represent the mixture, the sum of single-pollutant models, the sum of two-pollutant models and the sum of single-pollutant models from a larger body of evidence adjusted by coefficient difference., Results: Seventeen papers reported both single and two-pollutant estimates. Pooled hazard ratios (HRs) for mortality from single- and two-pollutant models were 1.053 (95% confidence interval: 1.034-1.071) and 1.035 (1.014-1.057), respectively, for a 5 μg/m3 increase in PM2.5 . HRs for a 10 μg/m3 increase in NO2 were 1.032 (1.014-1.049) and 1.024 (1.000-1.049) for single- and two-pollutant models, respectively. The average coefficient difference between single- and two-pollutant models was 0.017 for PM2.5 and 0.007 for NO2 . Combined PAFs for the PM2.5 -NO2 mixture using joint HRs from single- and two-pollutant model CRFs were 0.09 and 0.06, respectively., Conclusion: Utilizing CRFs from two-pollutant models or applying the coefficient difference to a more extensive evidence base seems to mitigate the potential overestimation of mixture health impacts from adding single-pollutant CRFs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF