1. How much nutrient reaches a stream: Insights from a hybrid model and implications for watershed nitrogen export and removal.
- Author
-
Zhang Z, Huang J, Chen S, and Sun C
- Subjects
- Models, Theoretical, Ecosystem, Nutrients analysis, Environmental Monitoring, Nitrogen analysis, Rivers chemistry, Agriculture
- Abstract
Excess nitrogen (N) discharged into streams and rivers degrades freshwater quality and threatens ecosystems worldwide. Land use patterns may influence riverine N export, yet the effect of location on N export and removal is not fully understood. We proposed a hybrid model to analyze N export and removal within the watersheds. The proposed model is satisfied for the riverine N modelling. The KGE and R
2 are 0.75 and 0.72 in the calibration period which are 0.76 and 0.61 in the validation period. Human-impacted land use may modify the N yield in the watershed, and the net N export from built-up to the in-stream system was highest in the urbanized sub-watersheds (0.81), followed by the agricultural sub-watersheds (0.88), and forested sub-watersheds (0.96). Agricultural activities make a large contribution to the N exports in the watersheds, and the mean N input from the agricultural land use to in-stream were 2069-4353 kg km-2 yr-1 . Besides, the excess inputs of N by overapplication of fertilizer and manure during the agricultural activities may increase legacy N in soil and groundwater. Biological processes for the riverine N removal may be controlled by the available substrate in the freshwater system, and temperature sensitivity of denitrification is highest in the flood seasons, especially for the human-impacted sub-watersheds. The riverine biological processes may be limited by other competitions. Our model results provide evidence that quantity and location of specific land use may control biogeochemistry within watersheds. We demonstrate the need to understand nutrient export and removal within watersheds by improving the representation of spatial patterns in existing watershed models, and we consider this study to be a new effort for the spatially explicit modeling to support land-use based N management in watersheds., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF