1. Macrophage-reprogramming upconverting nanoparticles for enhanced TAM-mediated antitumor therapy of hypoxic breast cancer.
- Author
-
Yoon J, Le XT, Kim J, Lee H, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, and Youn YS
- Subjects
- Animals, Mice, Mannose, Macrophages, Light, Paclitaxel therapeutic use, Cell Line, Tumor, Nanoparticles chemistry, Photochemotherapy, Neoplasms
- Abstract
In an attempt to achieve antitumor effects by switching the phenotype of macrophages from the tumor-promoting M2 type to the tumor-suppressing M1 type, we fabricated mannose-decorated/macrophage membrane-coated, silica-layered NaErF
4 @NaLuF4 upconverting nanoparticles (UCNPs) co-doped with perfluorocarbon (PFC)/chlorin e6 (Ce6) and loaded with paclitaxel (PTX) (UCNP@mSiO2 -PFC/Ce6@RAW-Man/PTX: ∼61 nm; -11.6 mV). These nanoparticles were designed to have two major functionalities, (i) efficient singlet oxygen generation aided by an oxygen supply and (ii) good targeting to tumor-associated macrophage (TAMs) (M2-type), to induce polarization to M1 type macrophages that release proinflammatory cytokines and suppress breast cancers. The primary UCNPs consisted of lanthanide elements (erbium and lutetium) in a core@shell structure, and they facilely emitted 660 nm light in response to a deep-penetrating 808 nm near-infrared laser. Moreover, the UCNPs@mSiO2 -PFC/Ce6@RAW-Man/PTX were able to release O2 and generate1 O2 because of the co-doped PFC/Ce6 and upconversion. Our nanocarriers' excellent uptake to RAW 264.7 macrophage cells (M2 type) and efficient M1-type polarization activity were clearly demonstrated using qRT-PCR and immunofluorescence-based confocal laser scanning microscopy. Our nanocarriers displayed significant cytotoxicity to 4T1 cells in 2D culture and 3D co-culture systems of 4T1/RAW 264.7 cells. More importantly, UCNPs@mSiO2 -PFC/Ce6@RAW-Man/PTX (+808 nm laser) noticeably suppressed tumor growth in 4T1-xenografted mice, compared with the other treatment groups (332.4 vs. 709.5-1185.5 mm3 ). We attribute this antitumor efficacy to the prominent M1-type macrophage polarization caused by our nanocarriers through efficient ROS/O2 generation and targeting of M2-type TAMs via mannose ligands on coated macrophage-membrane., Competing Interests: Declaration of Competing Interest The authors have no conflicts of interest to declare., (Copyright © 2023. Published by Elsevier B.V.)- Published
- 2023
- Full Text
- View/download PDF