1. Improving pesticide residue detection: Immobilized enzyme microreactor embedded in microfluidic paper-based analytical devices.
- Author
-
Zhang J, Li Y, Zhang T, Zheng Z, Jing H, and Liu C
- Subjects
- Enzymes, Immobilized chemistry, Microfluidics, Acetylcholinesterase metabolism, Reproducibility of Results, Kinetics, Molecular Docking Simulation, Lab-On-A-Chip Devices, Paper, Pesticide Residues analysis, Microfluidic Analytical Techniques
- Abstract
Orientationally immobilized enzyme microreactors (OIMERs), embedded in microfluidic paper-based analytical devices (μPADs) were developed for improved detection of pesticide residues in food. Acetylcholinesterase (AChE) was orientationally immobilized on the reusable Part I of the μPADs, using the specific affinity binding of concanavalin A (Con A) to a glycosyl group on AChE. Using the disposable Part II, facile colorimetric quantification was performed with a smartphone and software, or qualitative detection by a naked-eye visual test. The AChE immobilized in OIMERs not only had improved activity and stability, but also high sensitivity, with a limit of detection as low as (0.007 ± 0.003) μg/mL. The method was used to detect pesticides residues in real vegetable samples; the recovery (88.6-102.7%) showed high reliability for pesticide residues detection in foods. A molecular docking study and an enzyme kinetic analysis were conducted to characterize the mechanism of action of the OIMERs., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF