1. Enzymatic synthesis of polysaccharide-based copolymers
- Author
-
Pierre Roblin, Florent Grimaud, Laurence Tarquis, Xavier Falourd, Denis Lourdin, Pauline Faucard, Sandrine Morel, Agnès Rolland-Sabaté, Magali Remaud-Simeon, S. Le Gall, Sandra Pizzut-Serin, Gabrielle Potocki-Véronèse, Claire Moulis, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Region Midi-Pyrenees, European Regional Development Fund, ANR 14-CE27-0011-02, ANR-11-INBS-0012, Avignon Université (AU)-Institut National de la Recherche Agronomique (INRA), Laboratoire de Génie Chimique (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-11-INBS-0012,PHENOME,Centre français de phénomique végétale(2011), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
copolymère ,glucane ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Stereochemistry ,Biotechnologies ,02 engineering and technology ,Degree of polymerization ,010402 general chemistry ,medicine.disease_cause ,01 natural sciences ,Chemical synthesis ,Dextransucrase ,Leuconostoc citreum ,medicine ,Copolymer ,synthèse chimique ,Environmental Chemistry ,copolymer ,biology ,Chemistry ,glucan ,021001 nanoscience & nanotechnology ,biology.organism_classification ,Pollution ,Alternansucrase ,0104 chemical sciences ,enzyme ,Polymerization ,Leuconostoc mesenteroides ,0210 nano-technology ,chemical synthesis - Abstract
The design of enzymatic routes for the production of biosourced copolymers represents an attractive alternative to chemical synthesis from fossil carbon. In this paper, we explore the potential of glycosynthesizing enzymes to produce novel block copolymers composed of various covalently-linked α-glucans with contrasting structures and physicochemical properties. To this end, various glucansucrases able to synthesize α-glucans with different types of α-osidic bonds from sucrose were tested for their ability to elongate oligosaccharide and polysaccharide acceptors with different structures from the native polymer synthesized by each enzyme. We showed that two enzymes – namely, the alternansucrase from Leuconostoc mesenteroides NRRL B-1355 (specific for α(1 → 6)/α(1 → 3)-linked alternan synthesis) and the dextransucrase DSR-MΔ1 from Leuconostoc citreum NRRL B-1299 (specific for α(1 → 6)-linked dextran formation) – were able to elongate α(1 → 4)-linked amylose and α(1 → 6)/α(1 → 3)-linked alternan respectively. Carrying out stepwise acceptor reactions, and after optimization of the acceptor size and donor/acceptor ratio, two types of diblock copolymers were synthesized – a dextran-b-alternan and an alternan-b-amylose – as well as the triblock copolymer dextran-b-alternan-b-amylose. Their structural characterization, performed by combining chromatographic, NMR and permethylation analyses, showed that the copolymer polymerization degree ranged from 29 to 170, which is the highest degree of polymerization ever reported for an enzymatically synthesized polysaccharide-based copolymer. The addition of dextran and alternan blocks to amylose resulted in conformational modifications and related flexibility changes, as demonstrated by small angle X-ray scattering.
- Published
- 2018
- Full Text
- View/download PDF