1. SL(2,$\mathbb Z$)-action for ribbon quasi-Hopf algebras
- Author
-
Farsad, Vanda, Gainutdinov, Azat M., Runkel, Ingo, Fédération de recherche Denis Poisson (FDP), Université de Tours-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), and Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
- Subjects
group: representation ,Braided tensor categories ,SL(2 ,algebra: Hopf ,category: tensor ,Mathematics::Category Theory ,Mathematics::Quantum Algebra ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,category: representation ,Mapping class group representations ,structure ,Quasi-Hopf algebras ,Z) - Abstract
International audience; We study the universal Hopf algebra L of Majid and Lyubashenko in the case that the underlying ribbon category is the category of representations of a finite dimensional ribbon quasi-Hopf algebra A . We show that L=A⁎ with coadjoint action and compute the Hopf algebra structure morphisms of L in terms of the defining data of A . We give explicitly the condition on A which makes Rep A factorisable and compute Lyubashenko's projective SL(2,Z) -action on the centre of A in this case.
- Published
- 2019
- Full Text
- View/download PDF