Back to Search
Start Over
SL(2,$\mathbb Z$)-action for ribbon quasi-Hopf algebras
- Source :
- J.Algebra, J.Algebra, 2019, 522, pp.243-308. ⟨10.1016/j.jalgebra.2018.12.012⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- International audience; We study the universal Hopf algebra L of Majid and Lyubashenko in the case that the underlying ribbon category is the category of representations of a finite dimensional ribbon quasi-Hopf algebra A . We show that L=A⁎ with coadjoint action and compute the Hopf algebra structure morphisms of L in terms of the defining data of A . We give explicitly the condition on A which makes Rep A factorisable and compute Lyubashenko's projective SL(2,Z) -action on the centre of A in this case.
- Subjects :
- group: representation
Braided tensor categories
SL(2
algebra: Hopf
category: tensor
Mathematics::Category Theory
Mathematics::Quantum Algebra
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
category: representation
Mapping class group representations
structure
Quasi-Hopf algebras
Z)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J.Algebra, J.Algebra, 2019, 522, pp.243-308. ⟨10.1016/j.jalgebra.2018.12.012⟩
- Accession number :
- edsair.dedup.wf.001..63a73a615a2813354e5e75d3163bcfdc
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2018.12.012⟩