Back to Search Start Over

SL(2,$\mathbb Z$)-action for ribbon quasi-Hopf algebras

Authors :
Farsad, Vanda
Gainutdinov, Azat M.
Runkel, Ingo
Fédération de recherche Denis Poisson (FDP)
Université de Tours-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Institut Denis Poisson (IDP)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Source :
J.Algebra, J.Algebra, 2019, 522, pp.243-308. ⟨10.1016/j.jalgebra.2018.12.012⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; We study the universal Hopf algebra L of Majid and Lyubashenko in the case that the underlying ribbon category is the category of representations of a finite dimensional ribbon quasi-Hopf algebra A . We show that L=A⁎ with coadjoint action and compute the Hopf algebra structure morphisms of L in terms of the defining data of A . We give explicitly the condition on A which makes Rep A factorisable and compute Lyubashenko's projective SL(2,Z) -action on the centre of A in this case.

Details

Language :
English
Database :
OpenAIRE
Journal :
J.Algebra, J.Algebra, 2019, 522, pp.243-308. ⟨10.1016/j.jalgebra.2018.12.012⟩
Accession number :
edsair.dedup.wf.001..63a73a615a2813354e5e75d3163bcfdc
Full Text :
https://doi.org/10.1016/j.jalgebra.2018.12.012⟩