1. Multiple solutions for singular semipositone boundary value problems of fourth-order differential systems with parameters
- Author
-
Longfei Lin, Daliang Zhao, and Yansheng Liu
- Subjects
QA299.6-433 ,Algebra and Number Theory ,Mathematical analysis ,Multiple solutions ,Fixed-point index ,Differential systems ,Singular semipositone problems ,Combinatorics ,Fourth order ,Fixed point index ,Boundary value problem ,Cone ,Analysis ,Mathematics - Abstract
The aim of this paper is to establish some results about the existence of multiple solutions for the following singular semipositone boundary value problem of fourth-order differential systems with parameters: $$ \textstyle\begin{cases} u^{(4)}(t)+\beta _{1}u''(t)-\alpha _{1}u(t)=f_{1}(t,u(t),v(t)),\quad 0< t< 1; \\ v^{(4)}(t)+\beta _{2}v''(t)-\alpha _{2}v(t)=f_{2}(t,u(t),v(t)),\quad 0< t< 1; \\ u(0)=u(1)=u''(0)=u''(1)=0; \\ v(0)=v(1)=v''(0)=v''(1)=0, \end{cases} $$ { u ( 4 ) ( t ) + β 1 u ″ ( t ) − α 1 u ( t ) = f 1 ( t , u ( t ) , v ( t ) ) , 0 < t < 1 ; v ( 4 ) ( t ) + β 2 v ″ ( t ) − α 2 v ( t ) = f 2 ( t , u ( t ) , v ( t ) ) , 0 < t < 1 ; u ( 0 ) = u ( 1 ) = u ″ ( 0 ) = u ″ ( 1 ) = 0 ; v ( 0 ) = v ( 1 ) = v ″ ( 0 ) = v ″ ( 1 ) = 0 , where $f_{1},f_{2}\in C[(0,1)\times \mathbb{R}^{+}_{0}\times \mathbb{R}, \mathbb{R}]$ f 1 , f 2 ∈ C [ ( 0 , 1 ) × R 0 + × R , R ] , $\mathbb{R}_{0}^{+}=(0,+\infty )$ R 0 + = ( 0 , + ∞ ) . By constructing a special cone and applying fixed point index theory, some new existence results of multiple solutions for the considered system are obtained under some suitable assumptions. Finally, an example is worked out to illustrate the main results.
- Published
- 2021