1. Procedural learning is associated with microstructure of basal ganglia-cerebellar circuitry in children.
- Author
-
Bianco KM, Fuelscher I, Lum JAG, Singh M, Barhoun P, Silk TJ, Caeyenberghs K, Williams J, Enticott PG, Mukherjee M, Kumar G, Waugh J, and Hyde C
- Subjects
- Humans, Female, Male, Child, Reaction Time physiology, Neural Pathways physiology, Individuality, Cerebellum physiology, Cerebellum diagnostic imaging, Basal Ganglia physiology, Magnetic Resonance Imaging methods, Learning physiology, White Matter diagnostic imaging, White Matter physiology
- Abstract
In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (M
age = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the 'rebound effect' from the SRT task - a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF