1. Transcriptomic signatures reveal immune dysregulation in human diabetic and idiopathic gastroparesis
- Author
-
Madhusudan Grover, Simon J. Gibbons, Asha A. Nair, Cheryl E. Bernard, Adeel S. Zubair, Seth T. Eisenman, Laura A. Wilson, Laura Miriel, Pankaj J. Pasricha, Henry P. Parkman, Irene Sarosiek, Richard W. McCallum, Kenneth L. Koch, Thomas L. Abell, William J. Snape, Braden Kuo, Robert J. Shulman, Travis J. McKenzie, Todd A. Kellogg, Michael L. Kendrick, James Tonascia, Frank A. Hamilton, Gianrico Farrugia, and the NIDDK Gastroparesis Clinical Research Consortium (GpCRC)
- Subjects
Diabetes mellitus ,Next generation sequencing ,Macrophages ,RNA ,Signaling ,Internal medicine ,RC31-1245 ,Genetics ,QH426-470 - Abstract
Abstract Background Cellular changes described in human gastroparesis have revealed a role for immune dysregulation, however, a mechanistic understanding of human gastroparesis and the signaling pathways involved are still unclear. Methods Diabetic gastroparetics, diabetic non-gastroparetic controls, idiopathic gastroparetics and non-diabetic non-gastroparetic controls underwent full-thickness gastric body biopsies. Deep RNA sequencing was performed and pathway analysis of differentially expressed transcripts was done using Ingenuity®. A subset of differentially expressed genes in diabetic gastroparesis was validated in a separate cohort using QT-PCR. Results 111 genes were differentially expressed in diabetic gastroparesis and 181 in idiopathic gastroparesis with a log2fold difference of | ≥ 2| and false detection rate (FDR)
- Published
- 2018
- Full Text
- View/download PDF