1. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release.
- Author
-
Archer NK, Jo JH, Lee SK, Kim D, Smith B, Ortines RV, Wang Y, Marchitto MC, Ravipati A, Cai SS, Dillen CA, Liu H, Miller RJ, Ashbaugh AG, Uppal AS, Oyoshi MK, Malhotra N, Hoff S, Garza LA, Kong HH, Segre JA, Geha RS, and Miller LS
- Subjects
- Animals, Dermatitis, Atopic immunology, Dermatitis, Atopic microbiology, Dysbiosis immunology, Dysbiosis metabolism, Filaggrin Proteins, Inflammation immunology, Inflammation microbiology, Interleukin-1alpha immunology, Keratinocytes immunology, Mice, Mice, Inbred BALB C, Mice, Knockout, Dermatitis, Atopic metabolism, Inflammation metabolism, Interleukin-1alpha metabolism, Intermediate Filament Proteins deficiency, Keratinocytes metabolism
- Abstract
Background: Atopic dermatitis (AD) is associated with epidermal barrier defects, dysbiosis, and skin injury caused by scratching. In particular, the barrier-defective epidermis in patients with AD with loss-of-function filaggrin mutations has increased IL-1α and IL-1β levels, but the mechanisms by which IL-1α, IL-1β, or both are induced and whether they contribute to the aberrant skin inflammation in patients with AD is unknown., Objective: We sought to determine the mechanisms through which skin injury, dysbiosis, and increased epidermal IL-1α and IL-1β levels contribute to development of skin inflammation in a mouse model of injury-induced skin inflammation in filaggrin-deficient mice without the matted mutation (ft/ft mice)., Methods: Skin injury of wild-type, ft/ft, and myeloid differentiation primary response gene-88-deficient ft/ft mice was performed, and ensuing skin inflammation was evaluated by using digital photography, histologic analysis, and flow cytometry. IL-1α and IL-1β protein expression was measured by means of ELISA and visualized by using immunofluorescence and immunoelectron microscopy. Composition of the skin microbiome was determined by using 16S rDNA sequencing., Results: Skin injury of ft/ft mice induced chronic skin inflammation involving dysbiosis-driven intracellular IL-1α release from keratinocytes. IL-1α was necessary and sufficient for skin inflammation in vivo and secreted from keratinocytes by various stimuli in vitro. Topical antibiotics or cohousing of ft/ft mice with unaffected wild-type mice to alter or intermix skin microbiota, respectively, resolved the skin inflammation and restored keratinocyte intracellular IL-1α localization., Conclusions: Taken together, skin injury, dysbiosis, and filaggrin deficiency triggered keratinocyte intracellular IL-1α release that was sufficient to drive chronic skin inflammation, which has implications for AD pathogenesis and potential therapeutic targets., (Copyright © 2018 American Academy of Allergy, Asthma & Immunology. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF