Jean Michel Allamelou, Marc Vandeputte, Quentin Rivard, Pierrick Haffray, Jérôme Bugeon, Benjamin Quittet, Mathilde Dupont-Nivet, Sophie Puyo, Laboratoire de Physiologie et Génomique des Poissons (LPGP), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), US0774 Laboratoire d'Analyse Génétique pour les Espèces Animales (LABOGENA), Institut National de la Recherche Agronomique (INRA), Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Intensification raisonnée et écologique pour une pisciculture durable (UMR INTREPID), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), French Office of Marine Products OFIMER (convention no. 083/08/C), EU through FEP (convention no. 30900/2009)., Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Laboratoire d'Analyse Génétique pour les Espèces Animales (LABOGENA), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de la Recherche Agronomique (INRA), Croissance et qualité de la chair des poissons, Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement (INRA, UR1037, SCRIBE), Institut National de la Recherche Agronomique (INRA)-Institut National de la Recherche Agronomique (INRA), Laboratoire d'analyses génétiques pour les espèces animales/GIE Labogena, and Université de Rennes (UR)
Voir aussi : Pierrick Haffray, Jérome Bugeon, Quentin Rivard, Benjamin Quittet, Sophie Puyo, Jean Michel Allamelou, Marc Vandeputte, Mathilde Dupont-Nivet. 2013. Genetic parameters of in-vivo prediction of carcass, head and fillet yields by internal ultrasound and 2D external imagery in large rainbow trout (Oncorhynchus mykiss). Aquaculture (410–411), 236-244Voir aussi : Pierrick Haffray, Jérome Bugeon, Quentin Rivard, Benjamin Quittet, Sophie Puyo, Jean Michel Allamelou, Marc Vandeputte, Mathilde Dupont-Nivet. 2013. Genetic parameters of in-vivo prediction of carcass, head and fillet yields by internal ultrasound and 2D external imagery in large rainbow trout (Oncorhynchus mykiss). Aquaculture (410–411), 236-244; Selection to improve processing yields relies on sib selection, in which live candidates are ranked according to their family breeding value. This approach limits genetic progress, as it only exploits genetic variability between families and not within them. Indirect criteria measured on live candidates could overcome this limitation. The present study (1) proposes a procedure to identify indirect criteria to predict processing yields in rainbow trout (head, carcass and fillet yields), (2) estimates genetic parameters of these indirect criteria, and (3) predicts relative genetic gains in processing yields using full-sib selection or indirect individual selection on those indirect criteria. DNA-pedigreed all-female rainbow trout Oncorhynchus mykiss (n = 2029, 1631.0 ± 355.6 g) from 600 families produced from 100 sires and 60 dams were characterized by external and internal non-lethal morphological measures using digital pictures and real time ultrasound tomography. Nineteen landmarks were recorded on the digital pictures to define the outline of the body, head and lateral line. Their coordinates were used to calculate different lengths, heights and areas. Five different internal thicknesses were measured by ultrasound tomography. In the first phase of this study, processing yields were predicted using multiple linear regressions including both external and internal morphometric variables. In a second phase, the heritability of the predicted values and their genetic correlations with real processing yields were estimated using animal models. Predicted yields exhibited intermediate heritabilities (0.25–0.28) that were half the value of heritabilities for real processing yields (0.47–0.55), but had high genetic correlations with these real yields (0.87–0.90). The relative efficiency of indirect selection (IS) on these indirect criteria was compared to theoretical mass selection (MS) or sib selection (FS) with different family sizes (10 or 100) and two different selection pressures (10% or 40%). At the same selection pressure (10%, with 100 sibs per family %), full-sib selection created genetic progress 49.6% to 60.5% higher than indirect selection according to the processing yield targeted. However, when sib-selection pressure was limited to a more realistic between family selection pressure (40% and 10 sibs per family), indirect selection with 10% selection pressure was 21.9% to 32.7% more efficient than sib selection.