1. SurgeNAS: A Comprehensive Surgery on Hardware-Aware Differentiable Neural Architecture Search
- Author
-
Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu, School of Computer Science and Engineering, and HP-NTU Digital Manufacturing Corporate Lab
- Subjects
Computational Theory and Mathematics ,Hardware and Architecture ,Neural Architecture Search ,Computer science and engineering [Engineering] ,Hardware Performance Prediction ,Software ,Theoretical Computer Science - Abstract
Differentiable neural architecture search (NAS) is an emerging paradigm to automate the design of top-performing convolutional neural networks (CNNs). However, previous differentiable NAS methods suffer from several crucial weaknesses, such as inaccurate gradient estimation, high memory consumption, search fairness, etc. More importantly, previous differentiable NAS works are mostly hardware-agnostic since they only search for CNNs in terms of accuracy, ignoring other critical performance metrics like latency. In this work, we introduce a novel hardware-aware differentiable NAS framework, namely SurgeNAS, in which we leverage the one-level optimization to avoid inaccuracy in gradient estimation. To this end, we propose an effective identity mapping regularization to alleviate the over-selecting issue. Besides, to mitigate the memory bottleneck, we propose an ordered differentiable sampling approach, which significantly reduces the search memory consumption to the single-path level, thereby allowing to directly search on target tasks instead of small proxy tasks. Meanwhile, it guarantees the strict search fairness. Moreover, we introduce a graph neural networks (GNNs) based predictor to approximate the on-device latency, which is further integrated into SurgeNAS to enable the latency-aware architecture search. Finally, we analyze the resource underutilization issue, in which we propose to scale up the searched SurgeNets within \textit{Comfort Zone} to balance the computation and memory access, which brings considerable accuracy improvement without deteriorating the execution efficiency. Extensive experiments are conducted on ImageNet with diverse hardware platforms, which clearly show the effectiveness of SurgeNAS in terms of accuracy, latency, and search efficiency. Ministry of Education (MOE) Nanyang Technological University Submitted/Accepted version This work is partially supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE2019-T2-1-071) and Tier 1 (MOE2019-T1-001-072), and partially supported by Nanyang Technological University, Singapore, under its NAP (M4082282) and SUG (M4082087).
- Published
- 2023
- Full Text
- View/download PDF