Back to Search
Start Over
Optimal Application Mapping and Scheduling for Network-on-Chips with Computation in STT-RAM Based Router
- Source :
- IEEE Transactions on Computers. 68:1174-1189
- Publication Year :
- 2019
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2019.
-
Abstract
- Spin-Torque Transfer Magnetic RAM (STT-RAM), one of the emerging nonvolatile memory (NVM) technologies explored as the replacement for SRAM memory architectures, is particularly promising due to the fast access speed, high integration density, and zero standby power consumption. Recently, hybrid deigns with SRAM and STT-RAM buffers for routers in Network-on-Chip (NoC) systems have been widely implemented to maximize the mutually complementary characteristics of different memory technologies, and leverage the efficiency of intra-router latency and system power consumption. With the realization of Processing-in-Memory enabled by STT-RAM, in this paper, we novelly offload the execution from processors to the STT-RAM based on-chip routers to improve the application performance. On top of the hybrid buffer design in routers, we further present system-level approaches, including an ILP model and polynomial-time heuristic algorithms, to fine-tune the application mapping and scheduling on NoCs, with the objectives of improving system performance-energy efficiency. Network overhead caused by flit conflict in conventional communication circumstances can be ideally avoided by computing the contended flits in intermediate routers; meanwhile, the pressure of heavy workload on processors can be relieved by transferring partial operations to routers, such that network latency and system power consumption can be significantly reduced. Experimental results demonstrate that application schedule length and system energy consumption can be reduced by 35.62, 32.87 percent on average, respectively, in extensive evaluation experiments on PARSEC benchmark applications. In particular, the achievements of application performance and energy efficiency, averagely 36.44 and 33.19 percent, for the CNN application AlexNet have verified the practicability and effectiveness of our presented approaches.
- Subjects :
- Router
Random access memory
Hardware_MEMORYSTRUCTURES
business.industry
Computer science
02 engineering and technology
Energy consumption
020202 computer hardware & architecture
Theoretical Computer Science
Scheduling (computing)
Non-volatile memory
Computational Theory and Mathematics
Hardware and Architecture
Embedded system
0202 electrical engineering, electronic engineering, information engineering
System on a chip
Static random-access memory
business
Standby power
Software
Efficient energy use
Subjects
Details
- ISSN :
- 23263814 and 00189340
- Volume :
- 68
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Computers
- Accession number :
- edsair.doi...........33001ed7c5ae22ef002d85c0ab10b21a
- Full Text :
- https://doi.org/10.1109/tc.2018.2864749