1. The genomic landscape of familial glioma.
- Author
-
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML, Bainbridge MN, Amos CI, Barnholtz-Sloan JS, Bernstein JL, Claus EB, Houlston RS, Il'yasova D, Jenkins RB, Johansen C, Lachance D, Lai R, Melin BS, Merrell RT, Olson SH, Sadetzki S, Schildkraut J, Shete S, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Brown MA, Caulfield MJ, Chan GC, Giess A, Griffin JN, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Lakey A, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Mitchell J, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM, and Zarowiecki M
- Subjects
- Humans, Genomics, Genetic Predisposition to Disease, Whole Genome Sequencing, Calcium-Binding Proteins genetics, DNA-Binding Proteins genetics, Tumor Suppressor Proteins genetics, Glioma genetics, Glioma pathology, Brain Neoplasms genetics, Brain Neoplasms pathology
- Abstract
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 ( P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3 , and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
- Published
- 2023
- Full Text
- View/download PDF