1. A New Belief-Based Incomplete Pattern Unsupervised Classification Method
- Author
-
Zhe Liu, Zuo-Wei Zhang, Ma Zongfang, Hao Wang, Yiru Zhang, Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Xi'an University of Science and Technology, Norwegian University of Science and Technology (NTNU), Declarative & Reliable management of Uncertain, user-generated Interlinked Data (DRUID), GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), and Université de Rennes (UR)
- Subjects
0209 industrial biotechnology ,unsupervised classification ,Computer science ,02 engineering and technology ,Fuzzy logic ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Task (project management) ,020901 industrial engineering & automation ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,belief functions theory ,Classifier (linguistics) ,0202 electrical engineering, electronic engineering, information engineering ,incomplete pattern ,Cluster analysis ,business.industry ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Pattern recognition ,Missing data ,fuzzy c-means ,Computer Science Applications ,Computational Theory and Mathematics ,Classification methods ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,clustering ,Information Systems - Abstract
The clustering of incomplete patterns is a very challenging task because the estimations may negatively affect the distribution of real centers and thus cause uncertainty and imprecision in the results. To address this problem, a new belief-based incomplete pattern unsupervised classification method (BPC) is proposed in this paper. Firstly, the complete patterns are grouped into a few clusters by a classical soft method like fuzzy c-means to obtain the corresponding reliable centers and thereby are partitioned into reliable patterns and unreliable ones by an optimization method. Secondly, a basic classifier trained by reliable patterns is employed to classifies unreliable patterns and the incomplete patterns edited by the neighbors. In this way, most of the edited incomplete patterns can be submitted to specific clusters. Finally, some ambiguous patterns will be carefully repartitioned again by a new distance-based rule depending on the obtained reliable centers and belief functions theory. By doing this, a few patterns that are very difficult to classify between different specific clusters will be reasonably submitted to meta-cluster which can characterize the uncertainty and imprecision of the clusters due to missing values. The simulation results show that the BPC has the potential to deal with real datasets. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
- Published
- 2022
- Full Text
- View/download PDF