1. Genetic diversity of enterovirus G detected in faecal samples of wild boars in Japan: identification of novel genotypes carrying a papain-like cysteine protease sequence.
- Author
-
Nagata A, Sekiguchi Y, Oi T, Sunaga F, Madarame H, Imai R, Sano K, Katayama Y, Omatsu T, Oba M, Furuya T, Shirai J, Okabayashi T, Misawa N, Oka T, Mizutani T, and Nagai M
- Subjects
- Animals, Enteroviruses, Porcine, Genetic Variation genetics, Genome, Viral genetics, Genotype, Japan, Phylogeny, Recombination, Genetic genetics, Swine, Swine Diseases virology, Capsid Proteins genetics, Cysteine Proteases genetics, Enterovirus Infections virology, Feces virology, Papain genetics, Sus scrofa virology
- Abstract
The genetic diversity of enterovirus G (EV-G) was investigated in the wild-boar population in Japan. EV-G-specific reverse transcription PCR demonstrated 30 (37.5 %) positives out of 80 faecal samples. Of these, viral protein 1 (VP1) fragments of 20 samples were classified into G1 (3 samples), G4 (1 sample), G6 (2 samples), G8 (4 samples), G11 (1 sample), G12 (7 samples), G14 (1 sample) and G17 (1 sample), among which 11 samples had a papain-like cysteine protease (PL-CP) sequence, believed to be the first discoveries in G1 (2 samples) or G17 (1 sample) wild-boar EV-Gs, and in G8 (2 samples) or G12 (6 samples) EV-Gs from any animals. Sequences of the non-structural protein regions were similar among EV-Gs possessing the PL-CP sequence (PL-CP EV-Gs) regardless of genotype or origin, suggesting the existence of a common ancestor for these strains. Interestingly, for the two G8 and two G12 samples, the genome sequences contained two versions, with or without the PL-CP sequence, together with the homologous 2C/PL-CP and PL-CP/3A junction sequences, which may explain how the recombination and deletion of the PL-CP sequences occured in the PL-CP EV-G genomes. These findings shed light on the genetic plasticity and evolution of EV-G.
- Published
- 2020
- Full Text
- View/download PDF