1. Pathophysiology of high fat diet induced obesity: impact of probiotic banana juice on obesity associated complications and hepatosteatosis.
- Author
-
Konda PY, Poondla V, Jaiswal KK, Dasari S, Uyyala R, Surtineni VP, Egi JY, Masilamani AJA, Bestha L, Konanki S, Muthulingam M, Lingamgunta LK, Aloor BP, Tirumalaraju S, Sade A, Ratnam Kamsala V, Nagaraja S, Ramakrishnan R, and Natesan V
- Subjects
- Animals, Antioxidants metabolism, Body Weight drug effects, Fatty Liver metabolism, Fruit and Vegetable Juices, Insulin Resistance physiology, Lipid Metabolism drug effects, Lipid Peroxidation drug effects, Lipids, Liver drug effects, Liver metabolism, Male, Non-alcoholic Fatty Liver Disease drug therapy, Non-alcoholic Fatty Liver Disease metabolism, Obesity metabolism, Oxidative Stress drug effects, Rats, Rats, Wistar, Saccharomyces cerevisiae drug effects, Triglycerides metabolism, Diet, High-Fat adverse effects, Fatty Liver drug therapy, Musa metabolism, Obesity drug therapy, Probiotics pharmacology
- Abstract
The high fat diet alters intestinal microbiota due to increased intestinal permeability and susceptibility to microbial antigens leads to metabolic endotoxemia. But probiotic juices reported for various health benefits. In this background we hypothesized that pectinase treated probiotic banana juice has diverse effects on HFD induced obesity and non-alcoholic steatohepatitis. 20 weeks fed HFD successfully induced obesity and its associated complications in experimental rats. The supplementation of probiotic banana juice for 5 months at a dose of 5 mL/kg bw/day resulted significant decrease (p < 0.05) in body weight (380 ± 0.34), total fat (72 ± 0.8), fat percentage (17 ± 0.07) and fat free mass (165 ± 0.02). Reduction (p < 0.05) in insulin resistance (5.20 ± 0.03), lipid profile (TC 120 ± 0.05; TG 160 ± 0.24; HDL 38 ± 0.03), liver lipid peroxidation (0.7 ± 0.01), hepatic enzyme markers (AST 82 ± 0.06; ALT 78 ± 0.34; ALP 42 ± 0.22), and hepatic steatosis by increasing liver antioxidant potential (CAT 1.4 ± 0.30; GSH 1.04 ± 0.04; SOD 0.82 ± 0.22) with normal hepatic triglycerides (15 ± 0.02) and glycogen (0.022 ± 0.15) contents and also showed normal liver size, less accumulation of lipid droplets with only a few congestion. It is concluded that the increased intestinal S. cerevisiae yeast can switch anti-obesity, antidiabetic, antioxidative stress, antioxidant and anti-hepatosteatosis effect. This study results will have significant implications for treatment of NAFLD.
- Published
- 2020
- Full Text
- View/download PDF