1. Discovery and evaluation of novel SHIP-1 inhibitors.
- Author
-
Miao J, Lin J, Dong J, Amarasinghe O, Mason ER, Chu S, Qu Z, Cullers CC, Putt KS, and Zhang ZY
- Subjects
- Humans, Structure-Activity Relationship, Molecular Structure, Dose-Response Relationship, Drug, High-Throughput Screening Assays, Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases antagonists & inhibitors, Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases metabolism, Enzyme Inhibitors pharmacology, Enzyme Inhibitors chemistry, Enzyme Inhibitors chemical synthesis, Drug Discovery
- Abstract
Src Homology 2-containing Inositol 5'-Phosphatase-1 (SHIP-1), encoded by INPP5D, has been identified as an Alzheimer's disease (AD) risk-associated gene through recent genetic and epigenetic studies. SHIP-1 confers AD risk by inhibiting the TREM2 cascade and reducing beneficial microglial cellular processes, including phagocytosis. While several small molecules have been reported to modulate SHIP-1 activity, their limited selectivity and efficacy in advanced models restricted their potential as therapeutic agents or probes for biological studies. Herein, we validated and implemented a high-throughput screening platform to explore new chemotypes that can modulate the phosphatase activity of SHIP-1. We screened 49,260 central nervous system (CNS)-penetrate compounds sourced from commercial vendors using the malachite green-based assay for anti-SHIP-1 activity. Through analysis, prioritization, and validation of the screening hits, we identified three novel types of scaffolds that inhibit the SHIP-1 phosphatase activity with IC
50 s as low as 46.6 µM. To improve the inhibitory activity of these promising hits, we carried out structure-activity relationship (SAR) studies, resulting in a lead molecule SP3-12 that inhibits SHIP-1 with an IC50 value of 6.1 μM. Kinetic analyses of SP3-12 revealed that its inhibition mechanism is competitive, with a Ki value of 3.2 µM for SHIP-1 and a 7-fold selectivity over SHIP-2. Furthermore, results from testing in a microglial phagocytosis/cell health high content assay indicated that SP3-12 could effectively activate phagocytosis in human microglial clone 3 (HMC3) cells, with an EC50 of 2.0 µM, without cytotoxicity in the dose range. Given its potency, selectivity, and cellular activity, SP3-12 emerges as a promising small molecule inhibitor with potential for investigating the biological functions of SHIP-1., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF