Back to Search Start Over

Development of non-acidic 4-methylbenzenesulfonate-based aldose reductase inhibitors; Design, Synthesis, Biological evaluation and in-silicostudies.

Authors :
Said GE
Metwally HM
Abdel-Latif E
Elnagar MR
Ibrahim HS
Ibrahim MA
Source :
Bioorganic chemistry [Bioorg Chem] 2024 Oct; Vol. 151, pp. 107666. Date of Electronic Publication: 2024 Jul 22.
Publication Year :
2024

Abstract

Design and virtual screening of a set of non-acidic 4-methyl-4-phenyl-benzenesulfonate-based aldose reductase 2 inhibitors had been developed followed by chemical synthesis. Based on the results, the synthesized compounds 2, 4a,b, 7a-c, 9a-c, 10a-c, 11b,c and 14a-c inhibited the ALR2 enzymatic activity in a submicromolar range (99.29-417 nM) and among them, the derivatives 2, 9b, 10a and 14b were able to inhibit ALR2 by IC <subscript>50</subscript> of 160.40, 165.20, 99.29 and 120.6 nM, respectively. Moreover, kinetic analyses using Lineweaver-Burk plot revealed that the most active candidate 10a inhibited ALR2 potently via a non-competitive mechanism. In vivo studies showed that 10 mg/kg of compound 10a significantly lowered blood glucose levels in alloxan-induced diabetic mice by 46.10 %. Moreover, compound 10a showed no toxicity up to a concentration of 50 mg/kg and had no adverse effects on liver and kidney functions. It significantly increased levels of GSH and SOD while decreasing MDA levels, thereby mitigating oxidative stress associated with diabetes and potentially attenuating diabetic complications. Furthermore, the binding mode of compound 10a was confirmed through MD simulation. Noteworthy, compounds 2 and 14b showed moderate antimicrobial activity against the two fungi Aspergillus fumigatus and Aspergillus niger. Finally, we report the thiazole derivative 10a as a new promising non-acidic aldose reductase inhibitor that may be beneficial in treating diabetic complications.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2120
Volume :
151
Database :
MEDLINE
Journal :
Bioorganic chemistry
Publication Type :
Academic Journal
Accession number :
39067420
Full Text :
https://doi.org/10.1016/j.bioorg.2024.107666