1. Active Silicon Chiplet-Based Interposer for Exascale High Performance Computing
- Author
-
Emmanuel Ollier, P. Coudrain, Pascal Vivet, Denis Dutoit, Severine Cheramy, Jean Charbonnier, Fabien Clermidy, Département Composants Silicium (DCOS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département Systèmes et Circuits Intégrés Numériques (DSCIN), and Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
Smart system ,Silicon ,Computer science ,business.industry ,Big data ,chemistry.chemical_element ,Cloud computing ,Chip ,Supercomputer ,[SPI]Engineering Sciences [physics] ,chemistry ,Embedded system ,Interposer ,Bandwidth (computing) ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business - Abstract
With the era of massive multi-core architecture targeting cloud computing for exascale high performance computing (HPC) and big data applications, large scale multi-core are made possible thanks to advanced 3D integration technologies. This paper presents an innovative concept of active silicon interposer with stacked chiplets, with the objective of maintaining overall power consumption budget, increasing chip to chip bandwidth, and preserving full system cost by smart system partitioning.
- Published
- 2021
- Full Text
- View/download PDF