1. Enclosings of decompositions of complete multigraphs in 2-edge-connected r -factorizations
- Author
-
John Asplund, Pierre Charbit, Carl Feghali, Dalton State College, University System of Georgia (USG), Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Networks, Graphs and Algorithms (GANG), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), University of Bergen (UIB), This paper received partial support his paper received partial support by Fondation Sciences Mathématiques de Paris and the Research Council of Norway via the project CLASSIS, Grant Number 249994., and University of Bergen (UiB)
- Subjects
Discrete mathematics ,010102 general mathematics ,Multigraph ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,0102 computer and information sciences ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,01 natural sciences ,Theoretical Computer Science ,Combinatorics ,Factorization ,010201 computation theory & mathematics ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,Partition (number theory) ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,05B99 - Abstract
A decomposition of a multigraph $G$ is a partition of its edges into subgraphs $G(1), \ldots , G(k)$. It is called an $r$-factorization if every $G(i)$ is $r$-regular and spanning. If $G$ is a subgraph of $H$, a decomposition of $G$ is said to be enclosed in a decomposition of $H$ if, for every $1 \leq i \leq k$, $G(i)$ is a subgraph of $H(i)$. Feghali and Johnson gave necessary and sufficient conditions for a given decomposition of $\lambda K_n$ to be enclosed in some $2$-edge-connected $r$-factorization of $\mu K_{m}$ for some range of values for the parameters $n$, $m$, $\lambda$, $\mu$, $r$: $r=2$, $\mu>\lambda$ and either $m \geq 2n-1$, or $m=2n-2$ and $\mu = 2$ and $\lambda=1$, or $n=3$ and $m=4$. We generalize their result to every $r \geq 2$ and $m \geq 2n - 2$. We also give some sufficient conditions for enclosing a given decomposition of $\lambda K_n$ in some $2$-edge-connected $r$-factorization of $\mu K_{m}$ for every $r \geq 3$ and $m = (2 - C)n$, where $C$ is a constant that depends only on $r$, $\lambda$ and~$\mu$., Comment: 17 pages; fixed the proof of Theorem 1.4 and other minor changes
- Published
- 2019
- Full Text
- View/download PDF