Daniel Augot, Gwezheneg Robert, Pierre Loidreau, Geometry, arithmetic, algorithms, codes and encryption (GRACE), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), DGA Maîtrise de l'information (DGA.MI), Direction générale de l'Armement (DGA), INRIA, DGA, Geometry, arithmetic, algorithms, codes and encryption ( GRACE ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), DGA Maîtrise de l'information ( DGA.MI ), Délégation Générale de l'Armement, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
We generalize Gabidulin codes to a large family of fields, non necessarily finite, possibly with characteristic zero. We consider a general field extension and any automorphism in the Galois group of the extension. This setting enables one to give several definitions of metrics related to the rank-metric, yet potentially different. We provide sufficient conditions on the given automorphism to ensure that the associated rank metrics are indeed all equal and proper, in coherence with the usual definition from linearized polynomials over finite fields. Under these conditions, we generalize the notion of Gabidulin codes. We also present an algorithm for decoding errors and erasures, whose complexity is given in terms of arithmetic operations. Over infinite fields the notion of code alphabet is essential, and more issues appear that in the finite field case. We first focus on codes over integer rings and study their associated decoding problem. But even if the code alphabet is small, we have to deal with the growth of intermediate values. A classical solution to this problem is to perform the computations modulo a prime ideal. For this, we need study the reduction of generalized Gabidulin codes modulo an ideal. We show that the codes obtained by reduction are the classical Gabidulin codes over finite fields. As a consequence, under some conditions, decoding generalized Gabidulin codes over integer rings can be reduced to decoding Gabidulin codes over a finite field.