Back to Search Start Over

Embeddings of local fields in simple algebras and simplicial structures

Authors :
Daniel Skodlerack
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, Publ. Mat. 58, no. 2 (2014), 499-516, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Publicacions Matemàtiques; Vol. 58, Núm. 2 (2014); p. 499-516
Publication Year :
2021

Abstract

We give a geometric interpretation of Broussous-Grabitz embedding types. We fix a central division algebra $D$ of finite index over a non-Archimedean local field $F$ and a positive integer $m$. Further we fix a hereditary order $\mathfrak{a}$ of $\operatorname{M}_m(D)$ and an unramified field extension $E|F$ in $\operatorname{M}_m(D)$ which is embeddable in $D$ and which normalizes $\mathfrak{a}$. Such a pair $(E,\mathfrak{a})$ is called an embedding. The embedding types classify the $\operatorname{GL}_m(D)$-conjugation classes of these embeddings. Such a type is a class of matrices with non-negative integer entries. We give a formula which allows us to recover the embedding type of $(E,\mathfrak{a})$ from the simplicial type of the image of the barycenter of $\mathfrak{a}$ under the canonical isomorphism, from the set of $E^\times$-fixed points of the reduced building of $\operatorname{GL}_m(D)$ to the reduced building of the centralizer of $E^\times$ in $\operatorname{GL}_m(D)$. Conversely the formula allows to calculate the simplicial type up to cyclic permutation of the Coxeter diagram.

Details

Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, Publ. Mat. 58, no. 2 (2014), 499-516, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Publicacions Matemàtiques; Vol. 58, Núm. 2 (2014); p. 499-516
Accession number :
edsair.doi.dedup.....30420b530b2408dbb123907f3d981ef9