1. Comparison of Different Machine Learning Techniques to Predict Diabetic Kidney Disease
- Author
-
Khalid Siddiqui, MRM Rafiullah, and Satish Kumar
- Subjects
Machine Learning ,Article Subject ,Risk Factors ,Diabetes Mellitus ,Biomedical Engineering ,Humans ,Diabetic Nephropathies ,Health Informatics ,Surgery ,Software ,Biotechnology - Abstract
Background. Diabetic kidney disease (DKD), one of the complications of diabetes in patients, leads to progressive loss of kidney function. Timely intervention is known to improve outcomes. Therefore, screening patients to identify high-risk populations is important. Machine learning classification techniques can be applied to patient datasets to identify high-risk patients by building a predictive model. Objective. This study aims to identify a suitable classification technique for predicting DKD by applying different classification techniques to a DKD dataset and comparing their performance using WEKA machine learning software. Methods. The performance of nine different classification techniques was analyzed on a DKD dataset with 410 instances and 18 attributes. Data preprocessing was carried out using the PartitionMembershipFilter. A 10-fold cross validation was performed on the dataset. The performance was assessed on the basis of the execution time, accuracy, correctly and incorrectly classified instances, kappa statistics (K), mean absolute error, root mean squared error, and true values of the confusion matrix. Results. With an accuracy of 93.6585% and a higher K value (0.8731), IBK and random tree classification techniques were found to be the best performing techniques. Moreover, they also exhibited the lowest root mean squared error rate (0.2496). There were 15 false-positive instances and 11 false-negative instances with these prediction models. Conclusions. This study identified IBK and random tree classification techniques as the best performing classifiers and accurate prediction methods for DKD.
- Published
- 2022