10 results on '"Huart, Caroline"'
Search Results
2. Systemic corticosteroids in coronavirus disease 2019 (COVID-19)-related smell dysfunction: an international view.
- Author
-
Huart C, Philpott CM, Altundag A, Fjaeldstad AW, Frasnelli J, Gane S, Hsieh JW, Holbrook EH, Konstantinidis I, Landis BN, Macchi A, Mueller CA, Negoias S, Pinto JM, Poletti SC, Ramakrishnan VR, Rombaux P, Vodicka J, Welge-Lüessen A, Whitcroft KL, and Hummel T
- Subjects
- Drug-Related Side Effects and Adverse Reactions diagnosis, Drug-Related Side Effects and Adverse Reactions etiology, Drug-Related Side Effects and Adverse Reactions prevention & control, Global Health, Humans, Medication Therapy Management standards, Needs Assessment, Olfactory Mucosa drug effects, Olfactory Mucosa virology, Remission, Spontaneous, Research Design, SARS-CoV-2 pathogenicity, Adrenal Cortex Hormones pharmacology, COVID-19 complications, COVID-19 physiopathology, Medication Therapy Management statistics & numerical data, Olfaction Disorders drug therapy, Olfaction Disorders epidemiology, Olfaction Disorders etiology
- Abstract
The frequent association between coronavirus disease 2019 (COVID-19) and olfactory dysfunction is creating an unprecedented demand for a treatment of the olfactory loss. Systemic corticosteroids have been considered as a therapeutic option. However, based on current literature, we call for caution using these treatments in early COVID-19-related olfactory dysfunction because: (1) evidence supporting their usefulness is weak; (2) the rate of spontaneous recovery of COVID-19-related olfactory dysfunction is high; and (3) corticosteroids have well-known potential adverse effects. We encourage randomized placebo-controlled trials investigating the efficacy of systemic steroids in this indication and strongly emphasize to initially consider smell training, which is supported by a robust evidence base and has no known side effects., (© 2021 ARS-AAOA, LLC.)
- Published
- 2021
- Full Text
- View/download PDF
3. COVID-19: Recovery from Chemosensory Dysfunction. A Multicentre study on Smell and Taste.
- Author
-
Niklassen AS, Draf J, Huart C, Hintschich C, Bocksberger S, Trecca EMC, Klimek L, Le Bon SD, Altundag A, and Hummel T
- Subjects
- Adult, COVID-19 diagnosis, COVID-19 epidemiology, COVID-19 virology, Female, Humans, Male, Middle Aged, Olfaction Disorders rehabilitation, Olfaction Disorders virology, Olfactory Perception physiology, Prospective Studies, Recovery of Function physiology, SARS-CoV-2 genetics, Taste Disorders rehabilitation, Taste Disorders virology, Taste Perception physiology, COVID-19 complications, Olfaction Disorders physiopathology, Psychophysics methods, Taste Disorders physiopathology
- Abstract
Objective/hypothesis: With the COVID-19 pandemic, chemosensory dysfunction are among the most prevalent symptoms. Most reports are subjective evaluations, which have been suggested to be unreliable. The objective is to test chemosensory dysfunction and recovery based on extensive psychophysical tests in COVID-19 during the course of the disease., Study Design: Prospective cohort study., Methods: A total of 111 patients from four centers participated in the study. All tested positive for SARS-COV-2 with RT-PCR. They were tested within 3 days of diagnosis and 28 to 169 days after infection. Testing included extensive olfactory testing with the Sniffin' Sticks test for threshold, discrimination and identification abilities, and with the Taste Sprays and Taste Strips for gustatory function for quasi-threshold and taste identification abilities., Results: There was a significant difference in olfactory function during and after infection. During infection 21% were anosmic, 49% hyposmic, and 30% normosmic. After infection only 1% were anosmic, 26% hyposmic, and 73% normosmic. For gustatory function, there was a difference for all taste qualities, but significantly in sour, bitter, and total score. Twenty-six percent had gustatory dysfunction during infection and 6.5% had gustatory dysfunction after infection. Combining all tests 22% had combined olfactory and gustatory dysfunction during infection. After infection no patients had combined dysfunction., Conclusions: Chemosensory dysfunction is very common in COVID-19, either as isolated smell or taste dysfunction or a combined dysfunction. Most people regain their chemosensory function within the first 28 days, but a quarter of the patients show persisting dysfunction, which should be referred to specialist smell and taste clinics for rehabilitation of chemosensory function., Level of Evidence: 3 Laryngoscope, 131:1095-1100, 2021., (© 2021 The Authors. The Laryngoscope published by Wiley Periodicals LLC on behalf of The American Laryngological, Rhinological and Otological Society, Inc.)
- Published
- 2021
- Full Text
- View/download PDF
4. Clinical Olfactory Working Group consensus statement on the treatment of postinfectious olfactory dysfunction.
- Author
-
Addison AB, Wong B, Ahmed T, Macchi A, Konstantinidis I, Huart C, Frasnelli J, Fjaeldstad AW, Ramakrishnan VR, Rombaux P, Whitcroft KL, Holbrook EH, Poletti SC, Hsieh JW, Landis BN, Boardman J, Welge-Lüssen A, Maru D, Hummel T, and Philpott CM
- Subjects
- Consensus, Evidence-Based Medicine, Practice Guidelines as Topic, COVID-19 complications, COVID-19 epidemiology, COVID-19 immunology, Olfaction Disorders drug therapy, Olfaction Disorders epidemiology, Olfaction Disorders etiology, Olfaction Disorders immunology, SARS-CoV-2 immunology, Steroids therapeutic use, Vitamin A therapeutic use, COVID-19 Drug Treatment
- Abstract
Background: Respiratory tract viruses are the second most common cause of olfactory dysfunction. As we learn more about the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the recognition that olfactory dysfunction is a key symptom of this disease process, there is a greater need than ever for evidence-based management of postinfectious olfactory dysfunction (PIOD)., Objective: Our aim was to provide an evidence-based practical guide to the management of PIOD (including post-coronavirus 2019 cases) for both primary care practitioners and hospital specialists., Methods: A systematic review of the treatment options available for the management of PIOD was performed. The written systematic review was then circulated among the members of the Clinical Olfactory Working Group for their perusal before roundtable expert discussion of the treatment options. The group also undertook a survey to determine their current clinical practice with regard to treatment of PIOD., Results: The search resulted in 467 citations, of which 107 articles were fully reviewed and analyzed for eligibility; 40 citations fulfilled the inclusion criteria, 11 of which were randomized controlled trials. In total, 15 of the articles specifically looked at PIOD whereas the other 25 included other etiologies for olfactory dysfunction., Conclusions: The Clinical Olfactory Working Group members made an overwhelming recommendation for olfactory training; none recommended monocycline antibiotics. The diagnostic role of oral steroids was discussed; some group members were in favor of vitamin A drops. Further research is needed to confirm the place of other therapeutic options., (Copyright © 2021 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
5. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms.
- Author
-
Gerkin RC, Ohla K, Veldhuizen MG, Joseph PV, Kelly CE, Bakke AJ, Steele KE, Farruggia MC, Pellegrino R, Pepino MY, Bouysset C, Soler GM, Pereda-Loth V, Dibattista M, Cooper KW, Croijmans I, Di Pizio A, Ozdener MH, Fjaeldstad AW, Lin C, Sandell MA, Singh PB, Brindha VE, Olsson SB, Saraiva LR, Ahuja G, Alwashahi MK, Bhutani S, D'Errico A, Fornazieri MA, Golebiowski J, Dar Hwang L, Öztürk L, Roura E, Spinelli S, Whitcroft KL, Faraji F, Fischmeister FPS, Heinbockel T, Hsieh JW, Huart C, Konstantinidis I, Menini A, Morini G, Olofsson JK, Philpott CM, Pierron D, Shields VDC, Voznessenskaya VV, Albayay J, Altundag A, Bensafi M, Bock MA, Calcinoni O, Fredborg W, Laudamiel C, Lim J, Lundström JN, Macchi A, Meyer P, Moein ST, Santamaría E, Sengupta D, Rohlfs Dominguez P, Yanik H, Hummel T, Hayes JE, Reed DR, Niv MY, Munger SD, and Parma V
- Subjects
- Adult, Anosmia etiology, COVID-19 complications, Cross-Sectional Studies, Female, Humans, Male, Middle Aged, Prognosis, SARS-CoV-2 isolation & purification, Self Report, Smell, Anosmia diagnosis, COVID-19 diagnosis
- Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
6. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms.
- Author
-
Gerkin, Richard, Ohla, Kathrin, Veldhuizen, Maria, Joseph, Paule, Kelly, Christine, Bakke, Alyssa, Steele, Kimberley, Farruggia, Michael, Pellegrino, Robert, Pepino, Marta, Bouysset, Cédric, Soler, Graciela, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, Mehmet, Fjaeldstad, Alexander, Lin, Cailu, Sandell, Mari, Singh, Preet, Brindha, V, Olsson, Shannon, Saraiva, Luis, Ahuja, Gaurav, Alwashahi, Mohammed, Bhutani, Surabhi, DErrico, Anna, Fornazieri, Marco, Golebiowski, Jérôme, Dar Hwang, Liang, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine, Faraji, Farhoud, Fischmeister, Florian, Heinbockel, Thomas, Hsieh, Julien, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas, Philpott, Carl, Pierron, Denis, Shields, Vonnie, Voznessenskaya, Vera, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan, Macchi, Alberto, Meyer, Pablo, Moein, Shima, Santamaría, Enrique, Sengupta, Debarka, Rohlfs Dominguez, Paloma, Yanik, Hüseyin, Hummel, Thomas, Hayes, John, Reed, Danielle, Niv, Masha, Munger, Steven, and Parma, Valentina
- Subjects
anosmia ,chemosensory ,coronavirus ,hyposmia ,olfactory ,prediction ,Adult ,Anosmia ,COVID-19 ,Cross-Sectional Studies ,Female ,Humans ,Male ,Middle Aged ,Prognosis ,SARS-CoV-2 ,Self Report ,Smell - Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
- Published
- 2021
7. More than smell – COVID-19 is associated with severe impairment of smell, taste, and chemesthesis
- Author
-
Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Domínguez, Paloma Rohlfs, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, KL, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie DC, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William EA, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D’Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper HB, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, Abdulrahman, Olagunju, Dalton, Pamela, Yan, Carol H, Voznessenskaya, Vera V, Chen, Jingguo, Sell, Elizabeth A, and Walsh-Messinger, Julie
- Subjects
Neurosciences ,Dental/Oral and Craniofacial Disease ,Clinical Research ,Adult ,Aged ,Betacoronavirus ,COVID-19 ,Coronavirus Infections ,Female ,Humans ,Male ,Middle Aged ,Olfaction Disorders ,Pandemics ,Pneumonia ,Viral ,SARS-CoV-2 ,Self Report ,Smell ,Somatosensory Disorders ,Surveys and Questionnaires ,Taste ,Taste Disorders ,Young Adult ,head and neck surgery ,olfaction ,somatosensation ,GCCR Group Author ,Biological Sciences ,Neurology & Neurosurgery - Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
8. Mere end lugtesans - COVID-19 er associeret med svær påvirkning af lugtesansen, smagssansen og mundfølelsen
- Author
-
Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D’Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, Abdulrahman, Olagunju, Dalton, Pamela, Yan, Carol H, Voznessenskaya, Vera V, Chen, Jingguo, Sell, Elizabeth A, Walsh-Messinger, Julie, Archer, Nicholas S, Koyama, Sachiko, Deary, Vincent, Roberts, S Craig, Yanık, Hüseyin, Albayrak, Samet, Nováková, Lenka Martinec, Croijmans, Ilja, Mazal, Patricia Portillo, Moein, Shima T, Margulis, Eitan, Mignot, Coralie, Mariño, Sajidxa, Georgiev, Dejan, Kaushik, Pavan K, Malnic, Bettina, Wang, Hong, Seyed-Allaei, Shima, Yoluk, Nur, Razzaghi-Asl, Sara, Justice, Jeb M, Restrepo, Diego, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, Indústries Alimentàries, Qualitat i Tecnologia Alimentària, Tecnologia Alimentària, Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Mersin University, The Hebrew University of Jerusalem (HUJ), AbScent, Pennsylvania State University (Penn State), Penn State System, University of California [Irvine] (UC Irvine), University of California (UC), Université Côte d'Azur (UCA), University of Edinburgh, Università degli studi di Bari Aldo Moro = University of Bari Aldo Moro (UNIBA), Central Scientific Instruments Organisation (CSIR), Università degli Studi 'Magna Graecia' di Catanzaro = University of Catanzaro (UMG), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Medizinische Universität Wien = Medical University of Vienna, Groupement scientifique de Biologie et de Medecine Spatiale (GSBMS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES), Tata Institute for Fundamental Research (TIFR), Arizona State University [Tempe] (ASU), Universidad de Extremadura - University of Extremadura (UEX), Università degli Studi di Padova = University of Padua (Unipd), Yale School of Medicine [New Haven, Connecticut] (YSM), San Diego State University (SDSU), Aarhus University [Aarhus], University of Hertfordshire [Hatfield] (UH), Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), Neurosciences Sensorielles Comportement Cognition, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, University of Turku, Aristotle University of Thessaloniki, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Monell Chemical Senses Center, Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), Université de Montréal (UdeM), Wageningen University and Research Centre (WUR), Medical Science University, Sidra Medicine [Doha, Qatar], Institut de Chimie de Nice (ICN), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), University of Southern Queensland (USQ), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), DreamAir Llc, Charles University [Prague] (CU), Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), University of Massachusetts System (UMASS), Oregon State University (OSU), Ear Institute, UCL, Lyon Neuroscience Research center, Karunya University, Biruni University, Assi Sette Llaghi Varese, Stanford School of Medicine [Stanford], Stanford Medicine, Stanford University-Stanford University, University of East Anglia [Norwich] (UEA), California Department of Food and Agriculture (CDFA), Unité mixte de recherche interactions plantes-microorganismes, Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Maastricht University [Maastricht], Institute for Biology - Neurobiology, Freie Universität Berlin, Karl-Franzens-Universität Graz, Howard University College of Medicine, Towson University, University of California [San Diego] (UC San Diego), Proteomics, Center for Applied Medical Research (CIMA), Stockholm University, University of Gastronomic Sciences, Iran University of Medical Sciences, Goethe Universität Frankfurt, University of Tennessee, IBM T.J. Watson Research Center, Université libre de Bruxelles (ULB), Guangzhou Medical University, Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Sultan Qaboos University (SQU), Federal University of Technology of Akure (FUTA), A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences [Moscow] (RAS), Hospital of Xi'an Jiaotong University, University of Pennsylvania, University of Dayton, CSIRO Agriculture and Food (CSIRO), Indiana University [Bloomington], Indiana University System, University of Northumbria at Newcastle [United Kingdom], University of Stirling, Middle East Technical University [Ankara] (METU), Utrecht University [Utrecht], Instituto Universitario del Hospital Italiano [Buenos Aires, Argentina], Institute for Research in Fundamental Sciences [Tehran] (IPM), Hebrew University of Jerusalem, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Terrazas del Club Hipico, University Medical Centre Ljubljana [Ljubljana, Slovenia] (UMCL), Tata Institute of Fundamental Research [Bangalore], Universidade de São Paulo = University of São Paulo (USP), University of Florida [Gainesville] (UF), University of Colorado Anschutz [Aurora], Center for Smell and Taste, Department of Food Science, Pennsylvania State University., Julien, Sabine, Tıp Fakültesi, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Department of Food and Nutrition, Senses and Food, Research Center Jülich, University of California [Irvine] (UCI), University of California, Università degli studi di Bari Aldo Moro (UNIBA), Università degli Studi 'Magna Graecia' di Catanzaro [Catanzaro, Italie] (UMG), University of Extremadura, University of Padova, Yale University School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, University of Helsinki, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institute of Agrifood Research and Technology (IRTA), Universita degli Studi di Padova, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Karl-Franzens-Universität [Graz, Autriche], University of California San Diego Health, University of Brussels, University of Pennsylvania [Philadelphia], Tata Institute of Fundamental Research, University of São Paulo (USP), UCL - SSS/IONS - Institute of NeuroScience, FSE Campus Venlo, and RS: FSE UCV
- Subjects
Male ,Taste ,Physiology ,Smagstab ,Audiology ,AcademicSubjects/SCI01180 ,Settore BIO/09 - Fisiologia ,Behavioral Neuroscience ,chemistry.chemical_compound ,Olfaction Disorders ,Taste Disorders ,0302 clinical medicine ,RATINGS ,Hyposmia ,Surveys and Questionnaires ,CHEMOSENSITIVITY ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Viral ,PALADAR ,030223 otorhinolaryngology ,Sensory Science and Eating Behaviour ,media_common ,TASTE ,US NATIONAL-HEALTH ,[SDV.IDA] Life Sciences [q-bio]/Food engineering ,Middle Aged ,Biological Sciences ,16. Peace & justice ,Sensory Systems ,3. Good health ,Smell ,GCCR Group Author ,ddc:540 ,Smell loss ,Female ,Original Article ,medicine.symptom ,Corrigendum ,Coronavirus Infections ,olfaction ,Adult ,somatosensation ,medicine.medical_specialty ,663/664 ,Coronavirus disease 2019 (COVID-19) ,OLFACTORY DISORDERS ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,media_common.quotation_subject ,Pneumonia, Viral ,head and neck surgery ,Aged ,Betacoronavirus ,COVID-19 ,Humans ,Pandemics ,SARS-CoV-2 ,Self Report ,Somatosensory Disorders ,Young Adult ,Anosmia ,Sensory system ,Olfaction ,03 medical and health sciences ,Chemesthesis ,Physiology (medical) ,Perception ,medicine ,Neurology & Neurosurgery ,Behaviour Change and Well-being ,business.industry ,R-PACKAGE ,3112 Neurosciences ,Pneumonia ,Parosmia ,COMPONENT ,Smagssans ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,Sensoriek en eetgedrag ,chemistry ,Lugtetab ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,Lugtesans - Abstract
Correction: Chemical Senses, Volume 46, 2021, bjab050, https://doi.org/10.1093/chemse/bjab050 Published: 08 December 2021 Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
- Full Text
- View/download PDF
9. The best COVID-19 predictor is recent smell loss: a cross-sectional study
- Author
-
Gerkin, Richard, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule, Kelly, Christine, Bakke, Alyssa, Steele, Kimberley, Pellegrino, Robert, Pepino, Marta, Bouysset, Cédric, Soler, Graciela, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M. Hakan, D'Errico, Anna, Fischmeister, Florian Ph.S, Bock, María Adelaida, Domínguez, Paloma Paloma, Yanık, Hüseyin, Boesveldt, Sanne, de Groot, Jasper, Dinnella, Caterina, Freiherr, Jessica, Laktionova, Tatiana, Mariño, Sajidxa, Monteleone, Erminio, Nunez-Parra, Alexia, Abdulrahman, Olagunju, Ritchie, Marina, Thomas-Danguin, Thierry, Walsh-Messinger, Julie, Al Abri, Rashid, Alizadeh, Rafieh, Bignon, Emmanuelle, Cantone, Elena, Cecchini, Maria Paola, Chen, Jingguo, Guàrdia, Maria Dolors, Hoover, Kara, Karni, Noam, Navarro, Marta, Nolden, Alissa, Mazal, Patricia Portillo, Rowan, Nicholas, Sarabi-Jamab, Atiye, Archer, Nicholas, Chen, Ben, Di Valerio, Elizabeth, Feeney, Emma, Frasnelli, Johannes, Hannum, Mackenzie, Hopkins, Claire, Klein, Hadar, Mignot, Coralie, Mucignat, Carla, Ning, Yuping, Ozturk, Elif, Peng, Mei, Saatci, Ozlem, Sell, Elizabeth, Yan, Carol, Alfaro, Raul, Cecchetto, Cinzia, Coureaud, Gérard, Herriman, Riley, Justice, Jeb, Kaushik, Pavan Kumar, Koyama, Sachiko, Overdevest, Jonathan, Pirastu, Nicola, Ramirez, Vicente, Roberts, S. Craig, Smith, Barry, Cao, Hongyuan, Wang, Hong, Balungwe, Patrick, Baguma, Marius, Veldhuizen, Maria, Farruggia, Michael, Pizio, Antonella, Hakan Ozdener, M, Fjaeldstad, Alexander, Lin, Cailu, Sandell, Mari, Singh, Preet, Brindha, V. Evelyn, Olsson, Shannon, Saraiva, Luis, Ahuja, Gaurav, Alwashahi, Mohammed, Bhutani, Surabhi, Fornazieri, Marco, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine, Faraji, Farhoud, Fischmeister, Florian, Heinbockel, Thomas, Hsieh, Julien, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas, Philpott, Carl, Pierron, Denis, Shields, Vonnie, Voznessenskaya, Vera, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan, Macchi, Alberto, Meyer, Pablo, Moein, Shima, Santamaría, Enrique, Sengupta, Debarka, Rohlfs Dominguez, Paloma, Yanik, Hüseyin, Group, GCCR, Hummel, Thomas, Hayes, John, Reed, Danielle, Niv, Masha, Munger, Steven, Parma, Valentina, Arizona State University [Tempe] (ASU), Institute of Neuroscience and Medicine [Jülich] (INM-1), Mersin University, National Institutes of Health [Bethesda] (NIH), AbScent, Pennsylvania State University (Penn State), Penn State System, National Institute of Diabetes and Digestive and Kidney Diseases [Bethesda], Yale University [New Haven], Tennessee State University, University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Institut de Chimie de Nice (ICN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), University of Bari Aldo Moro (UNIBA), University of California [Irvine] (UCI), University of California, Utrecht University [Utrecht], Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Monell Chemical Senses Center, Regional Hospital West Jutland [Denmark], University of Helsinki, University of Oslo (UiO), Karunya University, Tata Institute for Fundamental Research (TIFR), Research at Sidra Medicine Research Branch [Doha, Qatar], Indraprastha Institute of Information Technology [New Delhi] (IIIT-Delhi), Sultan Qaboos University (SQU), San Diego State University (SDSU), Goethe-University Frankfurt am Main, State University of Londrina = Universidade Estadual de Londrina, University of Queensland [Brisbane], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), University College of London [London] (UCL), University of Graz, Howard University, Geneva University Hospital (HUG), Cliniques Universitaires Saint-Luc [Bruxelles], Aristotle University of Thessaloniki, Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), University of Gastronomic Sciences of Pollenzo (UNISG), Stockholm University, University of East Anglia [Norwich] (UEA), Towson University [Towson, MD, United States], University of Maryland System, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences [Moscow] (RAS), Universita degli Studi di Padova, Biruni University, Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hospital General de Barrio Obrero [Asunción, Paraguay] (Public Hospital Barrio Obrero ), Private practice [Milan], DreamAir Llc, Oregon State University (OSU), Cancer Center Karolinska [Karolinska Institutet] (CCK), Karolinska Institutet [Stockholm], University of Insubria, Varese, Computational Biology Center (IBM T.J. Watson Research Center), IBM, Institute for Research in Fundamental Sciences [Tehran] (IPM), Instituto de Investigación Sanitaria de Navarra [Pamplona, Spain] (IdiSNA), University of Extremadura, Technische Universität Dresden = Dresden University of Technology (TU Dresden), The Hebrew University of Jerusalem (HUJ), University of Florida [Gainesville] (UF), Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Non-byline authors (to be listed as collaborators in PubMed under the GCCR Group Author): Sanne Boesveldt, Jasper H.B. de Groot, Caterina Dinnella, Jessica Freiherr, Tatiana Laktionova, Sajidxa Mariño, Erminio Monteleone, Alexia Nunez-Parra, Olagunju Abdulrahman, Marina Ritchie, Thierry Thomas-Danguin, Julie Walsh-Messinger, Rashid Al Abri, Rafieh Alizadeh, Emmanuelle Bignon, Elena Cantone, Maria Paola Cecchini, Jingguo Chen, Maria Dolors Guàrdia, Kara C. Hoover, Noam Karni, Marta Navarro, Alissa A. Nolden, Patricia Portillo Mazal, Nicholas R. Rowan, Atiye SarabiJamab, Nicholas S. Archer, Ben Chen, Elizabeth A. Di Valerio, Emma L. Feeney, Johannes Frasnelli, Mackenzie E. Hannum, Claire Hopkins, Hadar Klein, Coralie Mignot, Carla Mucignat, Yuping Ning, Elif E. Ozturk, Mei Peng, Ozlem Saatci, Elizabeth A. Sell, Carol H. Yan, Raul Alfaro, Cinzia Cecchetto, Gérard Coureaud, Riley D. Herriman, Jeb M. Justice, Pavan Kumar Kaushik, Sachiko Koyama, Jonathan B. Overdevest, Nicola Pirastu, Vicente A. Ramirez, S. Craig Roberts, Barry C. Smith, Hongyuan Cao, Hong Wang, Patrick Balungwe Birindwa, Marius Baguma, Karl-Franzens-Universität [Graz, Autriche], Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, The Pennsylvania State University, University of Tennessee, University of Buenos Aires [Argentina], Università degli studi di Bari Aldo Moro (UNIBA), Goethe University of Frankfurt am Main, Wageningen University and Research [Wageningen] (WUR), Radboud university [Nijmegen], Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), A.N. Severtsov Institute of Ecology and Evolution RAS, 119071, Russia., RespiraLibre - Centro de Otorrinolaringología, Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Partenaires INRAE, Universidad de Chile = University of Chile [Santiago] (UCHILE), Federal University of Technology of Akure (FUTA), Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), University of Dayton, Iran University of Medical Sciences, University of Naples Federico II, University of Verona (UNIVR), Head and Neck Surgery, Hospital of Xi'an Jiaotong University, Institute of Agrifood Research and Technology (IRTA), University of Alaska [Fairbanks] (UAF), Hadassah Hebrew University Medical Center [Jerusalem], University of Southern Queensland (USQ), University of Massachusetts, Instituto Universitario del Hospital Italiano [Buenos Aires, Argentina], Johns Hopkins University School of Medicine [Baltimore], Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), The First Affiliated Hospital of Guangzhou Medical University (GMU), University College Dublin [Dublin] (UCD), Université du Québec à Trois-Rivières (UQTR), Guy's and St Thomas' Hospitals, University of Padova [Padova, Italy], Kilis Yedi Aralik University, University of Otago [Dunedin, Nouvelle-Zélande], Sancaktepe Education and Research Hospital, Hospital of the University of Pennsylvania (HUP), Perelman School of Medicine, University of Pennsylvania [Philadelphia]-University of Pennsylvania [Philadelphia], UC San Diego Health, University ofFlorida, Tata Institute of Fundamental Research, Indiana University [Bloomington], Indiana University System, Columbia University Irving Medical Center (CUIMC), University of Edinburgh, University of California [Merced], University of Stirling, University of London [London], Florida State University [Panama City], Université catholique de Bukavu, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Karunya Institute of Technology and Sciences, Sidra Medicine, School of Exercise and Nutritional Sciences, Howard University College of Medicine, Geneva University Hospitals, Geneva University , Geneva , Switzerland., CHU Genève, General Hospital Papageorgiou, University of Toulouse, University of Padova, Lyon Neuroscience Research center, IBM T.J. Watson Research Center, Navarrabiomed-IdiSNA, Temple University, Julien, Sabine, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Universitad de Buenos Aires = University of Buenos Aires [Argentina], Università degli studi di Bari Aldo Moro = University of Bari Aldo Moro (UNIBA), University of California [Irvine] (UC Irvine), University of California (UC), Karl-Franzens-Universität Graz, Universidad de Extremadura - University of Extremadura (UEX), Radboud University [Nijmegen], Università degli Studi di Firenze = University of Florence (UniFI), University of Naples Federico II = Università degli studi di Napoli Federico II, Università degli studi di Verona = University of Verona (UNIVR), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), Università degli Studi di Padova = University of Padua (Unipd), University of Pennsylvania-University of Pennsylvania, School of Medicine [Univ California San Diego] (UC San Diego), University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC)-University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Tata Institute of Fundamental Research [Bangalore], University of California [Merced] (UC Merced), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Sidra Medicine [Doha, Qatar], Universitá degli Studi dell’Insubria = University of Insubria [Varese] (Uninsubria), and Universitá degli Studi dell’Insubria
- Subjects
Adult ,Male ,medicine.medical_specialty ,Coronavirus disease 2019 (COVID-19) ,Cross-sectional study ,Visual analogue scale ,Anosmia ,Audiology ,Logistic regression ,AcademicSubjects/SCI01180 ,Article ,Odds ,03 medical and health sciences ,0302 clinical medicine ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Hyposmia ,Humans ,Medicine ,[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs ,030223 otorhinolaryngology ,SARS-CoV-2 ,business.industry ,[SCCO.NEUR]Cognitive science/Neuroscience ,COVID-19 ,Middle Aged ,Prognosis ,Smell ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,Cross-Sectional Studies ,[SDV.MHEP.OS] Life Sciences [q-bio]/Human health and pathology/Sensory Organs ,Smell loss ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Female ,Original Article ,Self Report ,medicine.symptom ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
BackgroundCOVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.MethodsThis preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery.ResultsBoth C19+ and C19-groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ∼50% of participants and was best predicted by time since illness onset.ConclusionsAs smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4
- Published
- 2020
10. Recent smell loss is the best predictor of COVID-19:a preregistered, cross-sectional study
- Author
-
Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, and Albayay, Javier
- Subjects
COVID-19 ,Lugtesans - Abstract
BACKGROUND: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.METHODS: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery.RESULTS: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset.CONCLUSIONS: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.