1. Longitudinal characterisation of B and T-cell immune responses after the booster dose of COVID-19 mRNA-vaccine in people with multiple sclerosis using different disease-modifying therapies.
- Author
-
Aiello A, Coppola A, Ruggieri S, Farroni C, Altera AMG, Salmi A, Vanini V, Cuzzi G, Petrone L, Meschi S, Lapa D, Bettini A, Haggiag S, Prosperini L, Galgani S, Quartuccio ME, Bevilacqua N, Garbuglia AR, Agrati C, Puro V, Tortorella C, Gasperini C, Nicastri E, and Goletti D
- Subjects
- Fingolimod Hydrochloride therapeutic use, Cytokines, T-Lymphocytes, COVID-19 Vaccines therapeutic use, Immunoglobulin G, Humans, Antibodies, Viral, Immunization, Secondary, RNA, Messenger, COVID-19, Multiple Sclerosis drug therapy
- Abstract
Background: The decline of humoral response to COVID-19 vaccine led to authorise a booster dose. Here, we characterised the kinetics of B-cell and T-cell immune responses in patients with multiple sclerosis (PwMS) after the booster dose., Methods: We enrolled 22 PwMS and 40 healthcare workers (HCWs) after 4-6 weeks from the booster dose (T3). Thirty HCWs and 19 PwMS were also recruited 6 months (T2) after the first dose. Antibody response was measured by anti-receptor-binding domain (RBD)-IgG detection, cell-mediated response by an interferon (IFN)-γ release assay (IGRA), Th1 cytokines and T-cell memory profile by flow cytometry., Results: Booster dose increased anti-RBD-IgG titers in fingolimod-treated, cladribine-treated and IFN-β-treated patients, but not in ocrelizumab-treated patients, although antibody titres were lower than HCWs. A higher number of fingolimod-treated patients seroconverted at T3. Differently, T-cell response evaluated by IGRA remained stable in PwMS independently of therapy. Spike-specific Th1-cytokine response was mainly CD4
+ T-cell-mediated, and in PwMS was significantly reduced (p<0.0001) with impaired IL-2 production compared with HCWs at T3. In PwMS, total Th1 and IFN-γ CD4+ T-cell responders to spike protein were increased from T2 to T3.Compared with HCWs, PwMS presented a higher frequency of CD4+ and CD8+ terminally differentiated effector memory cells and of CD4+ effector memory (TEM ) cells, independently of the stimulus suggesting the association of this phenotype with MS status. CD4+ and CD8+ TEM cell frequency was further increased at T3 compared with T2., Conclusions: COVID-19 vaccine booster strengthens humoral and Th1-cell responses and increases TEM cells in PwMS., Competing Interests: Competing interests: CT and CG received honoraria for speaking, manuscript writing or educational events from Merck, Biogen, Roche, Novartis Sanofi, Celgene, and Almirall. LP (Luca Prosperini) received consulting fees and/or speaker honoraria from Biogen, Celgene, Genzyme, Merck-Serono, Novartis and Teva, travel grants from Biogen, Genzyme, Novartis and Teva, research grants from the Italian MS Society (Associazione Italiana Sclerosi Multipla) and Genzyme. SH received travel funding and/or speaker honoraria from Biogen, Roche, Genzyme, Novartis and CSL Behring. SG received honoraria for speaking and travel grants from Biogen, Sanofi-Aventis, Merck Serono, Bayer-Schering, Teva, Genzyme, Almirall and Novartis. SR has received honoraria from Biogen, Merck Serono, Novartis and Teva for consulting services, speaking and/or travel support. EN participates on a data safety monitoring board or advisory board and receives fees for educational training from Gilead, Eli Lilly, GS, SOBI and Roche. EN has a patent pending for raloxifene use in COVID-19 with Dompè Pharmaceutical. DG is a member of the advisory board of Biomerieux and Eli Lilly and received fees for educational training or consultancy from Almirall, Biogen, Celgene, Diasorin, Janssen, Qiagen and Quidel. All the other authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest., (© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)- Published
- 2023
- Full Text
- View/download PDF