1. Online Reconfiguration of IoT Applications in the Fog: The Information-Coordination Trade-off
- Author
-
Arnaud Legrand, Panayotis Mertikopoulos, Bruno Donassolo, Ilhem Fajjari, Orange Labs [Chatillon], Orange Labs, Performance analysis and optimization of LARge Infrastructures and Systems (POLARIS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), GRID5000, ANR-16-CE33-0004,ORACLESS,Stratégies adaptatives d'allocation des ressources dans les réseaux sans fil dynamiques(2016), Laboratoire d'Informatique de Grenoble (LIG), Université Grenoble Alpes (UGA)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Criteo AI Lab, and Criteo [Paris]
- Subjects
020203 distributed computing ,Computer science ,business.industry ,Online learning ,Quality of service ,Distributed computing ,Testbed ,Internet of Things ,Control reconfiguration ,Cloud computing ,02 engineering and technology ,Online scheduling ,Scheduling (computing) ,Computational Theory and Mathematics ,Hardware and Architecture ,Signal Processing ,Reconfiguration ,0202 electrical engineering, electronic engineering, information engineering ,Fog computing ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,business ,5G - Abstract
The evolution of the Internet of Things (IoT) is driving an extraordinary growth of traffic and processing demands, persuading 5G players to change their infrastructures. In this context, Fog computing emerges as a potential solution, providing nearby resources to run IoT applications. However, the Fog raises several challenges which hinders its adoption. In this article, we consider the reconfiguration problem , i.e., how to dynamically adapt the placement of IoT applications running on the Fog, depending on application needs and evolution of resource usage. We propose and evaluate a series of reconfiguration algorithms, based on both online scheduling and online learning approaches. Through an extensive set of experiments in a realistic testbed, we demonstrate that the performance strongly depends on the quality and availability of information from both Fog infrastructure and IoT applications. This information mainly concerns the application’s resource usage (estimated by the user during the design of the application) and the availability of resources in the infrastructure (collected by commercial off-the-shelf monitoring tools). Finally, we show that a reactive and greedy strategy, which relies on this additional information, can overcome the performance of state-of-the-art online learning algorithms, even in a scenario with inaccurate information.
- Published
- 2022
- Full Text
- View/download PDF