Back to Search Start Over

Online Reconfiguration of IoT Applications in the Fog: The Information-Coordination Trade-off

Authors :
Arnaud Legrand
Panayotis Mertikopoulos
Bruno Donassolo
Ilhem Fajjari
Orange Labs [Chatillon]
Orange Labs
Performance analysis and optimization of LARge Infrastructures and Systems (POLARIS)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
GRID5000
ANR-16-CE33-0004,ORACLESS,Stratégies adaptatives d'allocation des ressources dans les réseaux sans fil dynamiques(2016)
Laboratoire d'Informatique de Grenoble (LIG)
Université Grenoble Alpes (UGA)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Criteo AI Lab
Criteo [Paris]
Source :
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Parallel and Distributed Systems, 2022, 33 (5), pp.1156-1172. ⟨10.1109/TPDS.2021.3097281⟩, IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2022, 33 (5), pp.1156-1172. ⟨10.1109/TPDS.2021.3097281⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

The evolution of the Internet of Things (IoT) is driving an extraordinary growth of traffic and processing demands, persuading 5G players to change their infrastructures. In this context, Fog computing emerges as a potential solution, providing nearby resources to run IoT applications. However, the Fog raises several challenges which hinders its adoption. In this article, we consider the reconfiguration problem , i.e., how to dynamically adapt the placement of IoT applications running on the Fog, depending on application needs and evolution of resource usage. We propose and evaluate a series of reconfiguration algorithms, based on both online scheduling and online learning approaches. Through an extensive set of experiments in a realistic testbed, we demonstrate that the performance strongly depends on the quality and availability of information from both Fog infrastructure and IoT applications. This information mainly concerns the application’s resource usage (estimated by the user during the design of the application) and the availability of resources in the infrastructure (collected by commercial off-the-shelf monitoring tools). Finally, we show that a reactive and greedy strategy, which relies on this additional information, can overcome the performance of state-of-the-art online learning algorithms, even in a scenario with inaccurate information.

Details

Language :
English
ISSN :
10459219
Database :
OpenAIRE
Journal :
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Parallel and Distributed Systems, 2022, 33 (5), pp.1156-1172. ⟨10.1109/TPDS.2021.3097281⟩, IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2022, 33 (5), pp.1156-1172. ⟨10.1109/TPDS.2021.3097281⟩
Accession number :
edsair.doi.dedup.....9e05cdc255bd0accba5b30d33fb2831d
Full Text :
https://doi.org/10.1109/TPDS.2021.3097281⟩