1. An Approximation Algorithm for Fully Planar Edge-Disjoint Paths
- Author
-
Claire Mathieu, Chien-Chung Huang, Mathieu Mari, Jens Vygen, Kevin Schewior, Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Universität zu Köln, University of Bonn, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS-PSL), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universität zu Köln = University of Cologne, Universität Bonn = University of Bonn, ANR-18-CE40-0025,ASSK,Algorithmes avec décomposition moins connu: graphes et matroids(2018), and ANR-19-CE48-0016,AlgoriDAM,Théorie algorithmique de nouveaux modèles de données(2019)
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,General Mathematics ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,0102 computer and information sciences ,Disjoint sets ,Edge (geometry) ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,01 natural sciences ,Combinatorics ,symbols.namesake ,Planar ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Mathematics - Combinatorics ,[INFO]Computer Science [cs] ,Data Structures and Algorithms (cs.DS) ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Discrete mathematics ,Approximation algorithm ,Maximization ,Planar graph ,010201 computation theory & mathematics ,symbols ,Graph (abstract data type) ,Combinatorics (math.CO) ,Computer Science - Discrete Mathematics ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
International audience; We devise a constant-factor approximation algorithm for the maximization version of the edge-disjoint paths problem if the supply graph together with the demand edges form a planar graph. By planar duality this is equivalent to packing cuts in a planar graph such that each cut contains exactly one demand edge. We also show that the natural linear programming relaxations have constant integrality gap, yielding an approximate max-multiflow min-multicut theorem.
- Published
- 2021
- Full Text
- View/download PDF