Back to Search
Start Over
An Approximation Algorithm for Fully Planar Edge-Disjoint Paths
- Source :
- SIAM Journal on Discrete Mathematics, SIAM Journal on Discrete Mathematics, 2021, 35 (2), pp.752-769. ⟨10.1137/20M1319401⟩, SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2021, 35 (2), pp.752-769. ⟨10.1137/20M1319401⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- International audience; We devise a constant-factor approximation algorithm for the maximization version of the edge-disjoint paths problem if the supply graph together with the demand edges form a planar graph. By planar duality this is equivalent to packing cuts in a planar graph such that each cut contains exactly one demand edge. We also show that the natural linear programming relaxations have constant integrality gap, yielding an approximate max-multiflow min-multicut theorem.
- Subjects :
- FOS: Computer and information sciences
Discrete Mathematics (cs.DM)
General Mathematics
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
0102 computer and information sciences
Disjoint sets
Edge (geometry)
[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
01 natural sciences
Combinatorics
symbols.namesake
Planar
TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
Computer Science - Data Structures and Algorithms
FOS: Mathematics
Mathematics - Combinatorics
[INFO]Computer Science [cs]
Data Structures and Algorithms (cs.DS)
ComputingMilieux_MISCELLANEOUS
Mathematics
Discrete mathematics
Approximation algorithm
Maximization
Planar graph
010201 computation theory & mathematics
symbols
Graph (abstract data type)
Combinatorics (math.CO)
Computer Science - Discrete Mathematics
MathematicsofComputing_DISCRETEMATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 08954801
- Database :
- OpenAIRE
- Journal :
- SIAM Journal on Discrete Mathematics, SIAM Journal on Discrete Mathematics, 2021, 35 (2), pp.752-769. ⟨10.1137/20M1319401⟩, SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2021, 35 (2), pp.752-769. ⟨10.1137/20M1319401⟩
- Accession number :
- edsair.doi.dedup.....b39abe85a4d30b0ffe66488a3d812d6a