1. Mixture modeling for identifying subtypes in disease course mapping
- Author
-
Stanley Durrleman, Pierre-Emmanuel Poulet, Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), This research has received funding from the program 'Investissements d’avenir' ANR-10-IAIHU-06. This work was also funded in part by the French government under management of Agence Nationale de la Recherche as part of the 'Investissements d’avenir' program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute)., Aasa Feragen, Stefan Sommer, Julia Schnabel, Mads Nielsen, ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), This paper is funded in part by grant number 678304 (ERC), 826421 (TVB-Cloud) from H2020 programme, and ANR-10-IAIHU-06 (IHU ICM), ANR-19-P3IA-0001 (PRAIRIE) and ANR-19-JPW2-000 (E-DADS) from ANR., Poulet, Pierre-Emmanuel, PaRis Artificial Intelligence Research InstitutE - - PRAIRIE2019 - ANR-19-P3IA-0001 - P3IA - VALID, Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,Population ,Stochastic approximation ,Machine learning ,computer.software_genre ,01 natural sciences ,Synthetic data ,010104 statistics & probability ,03 medical and health sciences ,0302 clinical medicine ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Alzheimer's disease subtypes ,mixed-effect models ,0101 mathematics ,Cognitive decline ,mixture models ,education ,Cluster analysis ,Non-linear mixed-effect model ,ComputingMilieux_MISCELLANEOUS ,Mixture model ,Ground truth ,education.field_of_study ,MCMC-SAEM ,business.industry ,Contrast (statistics) ,Disease course mapping ,Disease progression modelling ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,Artificial intelligence ,business ,computer ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,030217 neurology & neurosurgery - Abstract
International audience; Disease modeling techniques summarize the possible trajectories of progression from multimodal and longitudinal data. These techniques often assume that individuals form a homogeneous cluster, thus ignoring possible disease subtypes within the population. We extend a non-linear mixed-effect model used for disease course mapping with a mixture framework. We jointly estimate model parameters and subtypes with a tempered version of a stochastic approximation of the Expectation Maximisation algorithm. We show that our model recovers the ground truth parameters from synthetic data, in contrast to the naive solution consisting in post hoc clustering of individual parameters from a one-class model. Applications to Alzheimer's disease data allows the unsupervised identification of disease subtypes associated with distinct relationship between cognitive decline and progression of imaging and biological biomarkers.
- Published
- 2021
- Full Text
- View/download PDF