1. Enhanced catalytic activity of low-Pt content nanocatalysts supported on hollow carbon spheres for the ORR in alkaline media
- Author
-
Ivonne Liliana Alonso-Lemus, F.J. Rodríguez-Varela, P. C. Meléndez-González, Patricia Quintana-Owen, E. Garza-Duran, and J. C. Martínez-Loyola
- Subjects
chemistry.chemical_classification ,Materials science ,Ion exchange ,Mechanical Engineering ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Nanomaterial-based catalyst ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,chemistry ,Polyol ,Mechanics of Materials ,Bromide ,Specific surface area ,General Materials Science ,Particle size ,0210 nano-technology ,Nuclear chemistry - Abstract
In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).
- Published
- 2020