1. Pressure-induced reversible framework rearrangement and increased polarization in the polar [NH4][Cd(HCOO)3] hybrid perovskite
- Author
-
Alberto García-Fernández, Socorro Castro-García, Hongjun Xiang, Javier Sánchez-Benítez, Malgorzata Biczysko, Adrián Andrada-Chacón, Juan Manuel Bermúdez-García, Teng Gu, Manuel Sánchez-Andújar, Wei Ren, Shunbo Hu, Alessandro Stroppa, and María Antonia Señarís-Rodríguez
- Subjects
Materials science ,Atmospheric pressure ,Hydrostatic pressure ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,0104 chemical sciences ,External pressure ,Inorganic Chemistry ,chemistry.chemical_compound ,Crystallography ,chemistry ,Polar ,Formate ,0210 nano-technology ,Polarization (electrochemistry) - Abstract
In this work, we study the structural changes of the polar [NH4][Cd(HCOO)3] hybrid perovskite under external hydrostatic pressure. We report a reversible framework rearrangement as a function of pressure characterized by: (i) a gradual modification of one formate ligand, which changes its coordination mode from a bridging syn–anti mode at atmospheric pressure (LP-phase) to a chelating-anti mode at high-pressure (HP-phase) and (ii) a change in the coordination of the Cd2+ cations from six-coordinated (LP-phase) to hepta-coordinated (HP-phase). Very interestingly, this unprecedented framework arrangement displays a large electrical polarization. For instance, the polarization value observed at p = 17.7 GPa is about four times the polarization at atmospheric pressure. Therefore, we report that the external pressure induces a novel framework rearrangement in the polar [NH4][Cd(HCOO)3] hybrid perovskite with enhanced electrical polarization. This structure–property relationship offers new insights for designing novel ferroelectric materials based on pressure-responsive hybrid perovskite materials.
- Published
- 2019
- Full Text
- View/download PDF