Back to Search Start Over

Pressure-induced reversible framework rearrangement and increased polarization in the polar [NH4][Cd(HCOO)3] hybrid perovskite

Authors :
Alberto García-Fernández
Socorro Castro-García
Hongjun Xiang
Javier Sánchez-Benítez
Malgorzata Biczysko
Adrián Andrada-Chacón
Juan Manuel Bermúdez-García
Teng Gu
Manuel Sánchez-Andújar
Wei Ren
Shunbo Hu
Alessandro Stroppa
María Antonia Señarís-Rodríguez
Source :
Inorganic Chemistry Frontiers. 6:2379-2386
Publication Year :
2019
Publisher :
Royal Society of Chemistry (RSC), 2019.

Abstract

In this work, we study the structural changes of the polar [NH4][Cd(HCOO)3] hybrid perovskite under external hydrostatic pressure. We report a reversible framework rearrangement as a function of pressure characterized by: (i) a gradual modification of one formate ligand, which changes its coordination mode from a bridging syn–anti mode at atmospheric pressure (LP-phase) to a chelating-anti mode at high-pressure (HP-phase) and (ii) a change in the coordination of the Cd2+ cations from six-coordinated (LP-phase) to hepta-coordinated (HP-phase). Very interestingly, this unprecedented framework arrangement displays a large electrical polarization. For instance, the polarization value observed at p = 17.7 GPa is about four times the polarization at atmospheric pressure. Therefore, we report that the external pressure induces a novel framework rearrangement in the polar [NH4][Cd(HCOO)3] hybrid perovskite with enhanced electrical polarization. This structure–property relationship offers new insights for designing novel ferroelectric materials based on pressure-responsive hybrid perovskite materials.

Details

ISSN :
20521553
Volume :
6
Database :
OpenAIRE
Journal :
Inorganic Chemistry Frontiers
Accession number :
edsair.doi...........04586809b2438805b17a27b1c713955a
Full Text :
https://doi.org/10.1039/c9qi00749k