1. Alkyne-Tagged Dopamines as Versatile Analogue Probes for Dopaminergic System Analysis
- Author
-
Takuya Asai, Yasuyuki Ozeki, Takanori Iino, Yukari Fujimoto, Yosuke Ashikari, Mutsuo Nuriya, Keiko Karasawa, Jingwen Shou, Kaho Nakamura, and Masato Yasui
- Subjects
chemistry.chemical_classification ,Dopamine ,Dopaminergic Neurons ,Dopaminergic ,Alkyne ,Spectrum Analysis, Raman ,Analytical Chemistry ,chemistry.chemical_compound ,chemistry ,Alkynes ,Click chemistry ,medicine ,Neurotransmitter ,Neuroscience ,Function (biology) ,medicine.drug - Abstract
The dopaminergic system is essential for the function of the brain in health and disease. Therefore, detailed studies focused on unraveling the mechanisms involved in dopaminergic signaling are required. However, the lack of probes that mimic dopamine in living tissues, owing to the neurotransmitter's small size, has hampered analysis of the dopaminergic system. The current study aimed to overcome this limitation by developing alkyne-tagged dopamine compounds (ATDAs) that have a minimally invasive and uniquely identifiable alkyne group as a tag. ATDAs were established as chemically and functionally similar to dopamine and readily detectable by methods such as specific click chemistry and Raman scattering. The ATDAs developed here were verified as analogue probes that mimic dopamine in neurons and brain tissues, allowing the detailed characterization of dopamine dynamics. Therefore, ATDAs can act as safe and versatile tools with wide applicability in detailed studies of the dopaminergic system. Furthermore, our results suggest that the alkyne-tagging approach can also be applied to other small-sized neurotransmitters to facilitate characterization of their dynamics in the brain.
- Published
- 2021
- Full Text
- View/download PDF