1. Picosecond Infrared Laser Desorption Mass Spectrometry Identifies Medulloblastoma Subgroups on Intrasurgical Timescales
- Author
-
Taira Kiyota, Sunit Das, Isabelle Ferry, Howard J. Ginsberg, James T. Rutka, Megan Wu, Arash Zarrine-Afsar, David G. Munoz, Claudia M. Kuzan-Fischer, Betty Luu, Ahmed Aman, Michael D. Taylor, and Michael Woolman
- Subjects
0301 basic medicine ,Oncology ,Identification methods ,Cancer Research ,medicine.medical_specialty ,Malignant brain tumor ,Tumor resection ,Mass spectrometry ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,medicine ,Humans ,Cerebellar Neoplasms ,Grading (tumors) ,Medulloblastoma ,Intraoperative Care ,business.industry ,Linear discriminant analysis ,medicine.disease ,Prediction probability ,3. Good health ,030104 developmental biology ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,030220 oncology & carcinogenesis ,business - Abstract
Medulloblastoma (MB) is a pediatric malignant brain tumor composed of four different subgroups (WNT, SHH, Group 3, Group 4), each of which are a unique biological entity with distinct clinico-pathological, molecular, and prognostic characteristics. Although risk stratification of patients with MB based on molecular features may offer personalized therapies, conventional subgroup identification methods take too long and are unable to deliver subgroup information intraoperatively. This limitation prevents subgroup-specific adjustment of the extent or the aggressiveness of the tumor resection by the neurosurgeon. In this study, we investigated the potential of rapid tumor characterization with Picosecond infrared laser desorption mass spectrometry (PIRL-MS) for MB subgroup classification based on small molecule signatures. One hundred and thirteen ex vivo MB tumors from a local tissue bank were subjected to 10- to 15-second PIRL-MS data collection and principal component analysis with linear discriminant analysis (PCA-LDA). The MB subgroup model was established from 72 independent tumors; the remaining 41 de-identified unknown tumors were subjected to multiple, 10-second PIRL-MS samplings and real-time PCA-LDA analysis using the above model. The resultant 124 PIRL-MS spectra from each sampling event, after the application of a 95% PCA-LDA prediction probability threshold, yielded a 98.9% correct classification rate. Post-ablation histopathologic analysis suggested that intratumoral heterogeneity or sample damage prior to PIRL-MS sampling at the site of laser ablation was able to explain failed classifications. Therefore, upon translation, 10-seconds of PIRL-MS sampling is sufficient to allow personalized, subgroup-specific treatment of MB during surgery. Significance: This study demonstrates that laser-extracted lipids allow immediate grading of medulloblastoma tumors into prognostically important subgroups in 10 seconds, providing medulloblastoma pathology in an actionable manner during surgery.
- Published
- 2019
- Full Text
- View/download PDF