1. Learning the spatiotemporal variability in longitudinal shape data sets
- Author
-
Stanley Durrleman, Alexandre Bône, Olivier Colliot, Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), This work has been partly funded by the European Research Council with grant 678304, European Union’s Horizon 2020 research and innovation program with grant 666992, and the program Investissements d’avenir ANR-10-IAIHU-06.Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bio-engineering, and through generous contributions from the following: AbbVie, Alzheimers Association, Alzheimers Drug Discovery Foundation, Araclon Biotech, BioClinica, Inc., Biogen, Bristol-Myers Squibb Company, CereSpir, Inc., Cogstate, Eisai Inc., Elan Pharmaceuticals, Inc., Eli Lilly and Company, EuroImmun, F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc., Fujirebio, GE Healthcare, IXICO Ltd., Janssen Alzheimer Immunotherapy Research & Development, LLC., Johnson & Johnson Pharmaceutical Research & Development LLC., Lumosity, Lundbeck, Merck & Co., Inc., Meso Scale Diagnostics, LLC., NeuroRx Research, Neurotrack Technologies, Novartis Pharmaceuticals Corporation, Pfizer Inc., Piramal Imaging, Servier, Takeda Pharmaceutical Company, and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California., Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), ANR-05-PADD-0003,TRANS,Transformations de l'élevage et dynamiques des espaces(2005), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Bône, Alexandre, PaRis Artificial Intelligence Research InstitutE - - PRAIRIE2019 - ANR-19-P3IA-0001 - P3IA - VALID, and Programme fédérateur Agriculture et Développement Durable - Transformations de l'élevage et dynamiques des espaces - - TRANS2005 - ANR-05-PADD-0003 - ADD - VALID
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,Disease progression modeling ,Large deformation diffeomorphic metric mapping ,Computer science ,Statistical shape analysis ,02 engineering and technology ,Stochastic approximation ,Computational morphometry ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Artificial Intelligence ,0202 electrical engineering, electronic engineering, information engineering ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Set (psychology) ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] ,Longitudinal data ,business.industry ,Disease progression modelin ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Pattern recognition ,Statistical model ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-MS] Computer Science [cs]/Mathematical Software [cs.MS] ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Pattern recognition (psychology) ,Trajectory ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,020201 artificial intelligence & image processing ,Medical imaging ,Computer Vision and Pattern Recognition ,Noise (video) ,Artificial intelligence ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,business ,Software - Abstract
International audience; In this paper, we propose a generative statistical model to learn the spatiotemporal variability in longitudinal shape data sets, which contain repeated observations of a set of objects or individuals over time. From all the short-term sequences of individual data, the method estimates a long-term normative scenario of shape changes and a tubular coordinate system around this trajectory. Each individual data sequence is therefore (i) mapped onto a specific portion of the trajectory accounting for differences in pace of progression across individuals, and (ii) shifted in the shape space to account for intrinsic shape differences across individuals that are independent of the progression of the observed process. The parameters of the model are estimated using a stochastic approximation of the expectation–maximization algorithm. The proposed approach is validated on a simulated data set, illustrated on the analysis of facial expression in video sequences, and applied to the modeling of the progressive atrophy of the hippocampus in Alzheimer’s disease patients. These experiments show that one can use the method to reconstruct data at the precision of the noise, to highlight significant factors that may modulate the progression, and to simulate entirely synthetic longitudinal data sets reproducing the variability of the observed process.
- Published
- 2020
- Full Text
- View/download PDF