Back to Search Start Over

Learning joint shape and appearance representations with metamorphic auto-encoders

Authors :
Paul Vernhet
Alexandre Bône
Stanley Durrleman
Olivier Colliot
Vernhet, Paul
PaRis Artificial Intelligence Research InstitutE - - PRAIRIE2019 - ANR-19-P3IA-0001 - P3IA - VALID
Institut du Cerveau = Paris Brain Institute (ICM)
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Algorithms, models and methods for images and signals of the human brain (ARAMIS)
Sorbonne Université (SU)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM)
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM)
Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM)
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
MICCAI 2020-23rd International Conference on Image Computing and Computer Assisted Interventions, MICCAI 2020-23rd International Conference on Image Computing and Computer Assisted Interventions, Oct 2020, Lima / Virtual, Peru, HAL, Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 ISBN: 9783030597092, MICCAI (1), Lecture Notes in Computer Science, Lecture Notes in Computer Science-Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Medical Image Computing and Computer Assisted Intervention – MICCAI 2020-23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Transformation-based methods for shape analysis offer a consistent framework to model the geometrical content of images. Most often relying on diffeomorphic transforms, they lack however the ability to properly handle texture and differing topological content. Conversely, modern deep learning methods offer a very efficient way to analyze image textures. Building on the theory of metamorphoses, which models images as combined intensity-domain and spatial-domain transforms of a prototype, we introduce the "metamorphic" auto-encoding architecture. This class of neural networks is interpreted as a Bayesian generative and hierarchical model, allowing the joint estimation of the network parameters, a representative prototype of the training images, as well as the relative importance between the geometrical and texture contents. We give arguments for the practical relevance of the learned prototype and Euclidean latent-space metric, achieved thanks to an explicit normalization layer. Finally, the ability of the proposed architecture to learn joint and relevant shape and appearance representations from image collections is illustrated on BraTs 2018 datasets, showing in particular an encouraging step towards personalized numerical simulation of tumors with data-driven models.

Details

Language :
English
ISBN :
978-3-030-59709-2
978-3-030-59710-8
ISSN :
03029743 and 16113349
ISBNs :
9783030597092 and 9783030597108
Database :
OpenAIRE
Journal :
MICCAI 2020-23rd International Conference on Image Computing and Computer Assisted Interventions, MICCAI 2020-23rd International Conference on Image Computing and Computer Assisted Interventions, Oct 2020, Lima / Virtual, Peru, HAL, Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 ISBN: 9783030597092, MICCAI (1), Lecture Notes in Computer Science, Lecture Notes in Computer Science-Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Medical Image Computing and Computer Assisted Intervention – MICCAI 2020-23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I
Accession number :
edsair.doi.dedup.....e5d86b41d08c2dba396ef9b86b1f62d0