1. Machine learning using the Extreme Gradient Boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients
- Author
-
Marie M. Jeitziner, Iris Drvaric, Jan Wiegand, Abele Donati, Janina Apolo, Emanuele Rezoagli, Jesús Escós-Orta, Herminia Lozano-Gómez, Mirko Brenni, Giovanni Camen, Frank Hillgaertner, Sara Moccia, Antje Heise, Alexander Dullenkopf, Michael Stephan, Can Ince, Marcus Laube, Julien Marrel, Michele Bernardini, Barbara Lienhardt-Nobbe, Hernán Aguirre-Bermeo, Alberto Fogagnolo, Dorothea M. Heuberger, Severin Urech, Reto A. Schuepbach, Andrea Glotta, Samuele Ceruti, Isabelle Fleisch, Marc P. Michot, Alice Nova, Matthias P. Hilty, Tomislav Gaspert, Gianfilippo Gangitano, Savino Spadaro, Ivan Chau, Daniele Berardini, Tiziana Perin, Andrea Westphalen, Marie-Reine Losser, Hatem Ksouri, Marie-Hélène Perez, Theodoros Aslanidis, Christoph Haberthuer, Gerardo Vizmanos-Lamotte, Jorge Gámez-Zapata, Filippo Boroli, Adriana Lambert, Serge Grazioli, Petra Salomon, Christian Bürkle, Didier Naon, Philipp Bühler, Dawid L. Staudacher, Miodrag Filipovic, Hermann Redecker, Mario Alfaro-Farias, Massimo Antonelli, Rolf Ensner, Jerome Lavanchy, Lukas Merki, Roberto Ceriani, Anette Ristic, Chiara Cogliati, Reto Andreas Schüpbach, Daniela Selz, Begoña Zalba-Etayo, Anne-Sylvie Ramelet, Thierry Fumeaux, Andrea Carsetti, Peter Gerecke, Riccardo Colombo, Marilene Franchitti Laurent, Fabrizio Turrini, Tobias Wengenmayer, Tobias Welte, Philippe Guerci, Antonella Potalivo, Lucia Migliorelli, Barna Babik, Reza Nikandish, Pedro D. Wendel Garcia, Alberto Martínez, Maria Sole Simonini, Diederik Gommers, Xiana Taboada-Fraga, Jerome Pugin, Peter C. Rimensberger, Angela Algaba-Calderon, FriederikeMeyer zu Bentrup, Agios Pavlos, Thomas Tschoellitsch, Marianne Sieber, Karim Shaikh, Nuria Zellweger, Silvio Brugger, Geoffrey Jurkolow, Anja Baltussen Weber, Maria C. Martín-Delgado, Anita Korsós, Gian-Reto Kleger, Alexander Klarer, Emmanuel Novy, Diego Franch-Llasat, Adrian Tellez, Peter Schott, Jonathan Rilinger, Andreas Christ, Bernd Yuen, Jean-Christophe Laurent, Nadine Gehring, Pedro Castro, Sascha David, Francesca Facondini, Arantxa Lander-Azcona, Maria Grazia Bocci, Maddalena Alessandra Wu, Mallory Moret-Bochatay, Sara Cereghetti, Urs Pietsch, Martina Murrone, Gauthier Delahaye, Luca Romeo, Pascal Locher, Pedro David Wendel Garcia, Michael Sepulcri, Marija Jovic, Katharina Marquardt, Emanuele Frontoni, Patricia Fodor, Emanuele Catena, Tobias Hübner, Thomas Neff, Roger F. Lussman, Matteo Giacomini, Govind Oliver Sridharan, Beatrice Jenni-Moser, Jan Brem, Michael Studhalter, Elif Colak, Raquel Rodríguez-García, Silvia Fabbri, Jens Meier, Lina Petersen, Jonathan Montomoli, Ferran Roche-Campo, Klaus Stahl, Montomoli, J, Romeo, L, Moccia, S, Bernardini, M, Migliorelli, L, Berardini, D, Donati, A, Carsetti, A, Bocci, M, Wendel Garcia, P, Fumeaux, T, Guerci, P, Schupbach, R, Ince, C, Frontoni, E, Hilty, M, Alfaro-Farias, M, Vizmanos-Lamotte, G, Tschoellitsch, T, Meier, J, Aguirre-Bermeo, H, Apolo, J, Martinez, A, Jurkolow, G, Delahaye, G, Novy, E, Losser, M, Wengenmayer, T, Rilinger, J, Staudacher, D, David, S, Welte, T, Stahl, K, Pavlos, A, Aslanidis, T, Korsos, A, Babik, B, Nikandish, R, Rezoagli, E, Giacomini, M, Nova, A, Fogagnolo, A, Spadaro, S, Ceriani, R, Murrone, M, Wu, M, Cogliati, C, Colombo, R, Catena, E, Turrini, F, Simonini, M, Fabbri, S, Potalivo, A, Facondini, F, Gangitano, G, Perin, T, Grazia Bocci, M, Antonelli, M, Gommers, D, Rodriguez-Garcia, R, Gamez-Zapata, J, Taboada-Fraga, X, Castro, P, Tellez, A, Lander-Azcona, A, Escos-Orta, J, Martin-Delgado, M, Algaba-Calderon, A, Franch-Llasat, D, Roche-Campo, F, Lozano-Gomez, H, Zalba-Etayo, B, Michot, M, Klarer, A, Ensner, R, Schott, P, Urech, S, Zellweger, N, Merki, L, Lambert, A, Laube, M, Jeitziner, M, Jenni-Moser, B, Wiegand, J, Yuen, B, Lienhardt-Nobbe, B, Westphalen, A, Salomon, P, Drvaric, I, Hillgaertner, F, Sieber, M, Dullenkopf, A, Petersen, L, Chau, I, Ksouri, H, Sridharan, G, Cereghetti, S, Boroli, F, Pugin, J, Grazioli, S, Rimensberger, P, Burkle, C, Marrel, J, Brenni, M, Fleisch, I, Lavanchy, J, Perez, M, Ramelet, A, Weber, A, Gerecke, P, Christ, A, Ceruti, S, Glotta, A, Marquardt, K, Shaikh, K, Hubner, T, Neff, T, Redecker, H, Moret-Bochatay, M, Bentrup, F, Studhalter, M, Stephan, M, Brem, J, Gehring, N, Selz, D, Naon, D, Kleger, G, Pietsch, U, Filipovic, M, Ristic, A, Sepulcri, M, Heise, A, Franchitti Laurent, M, Laurent, J, Schuepbach, R, Heuberger, D, Buhler, P, Brugger, S, Fodor, P, Locher, P, Camen, G, Gaspert, T, Jovic, M, Haberthuer, C, Lussman, R, Colak, E, Biomedical Engineering and Physics, ACS - Microcirculation, Translational Physiology, ACS - Atherosclerosis & ischemic syndromes, Graduate School, AII - Infectious diseases, and University of Zurich
- Subjects
610 Medicine & health ,Organ dysfunction score ,Machine learning ,computer.software_genre ,Logistic regression ,Clinical decision support system ,law.invention ,law ,Medicine ,Clinical decision support system (CDSS) ,Receiver operating characteristic ,RC86-88.9 ,business.industry ,Clinical decision support systems ,COVID-19 ,Medical emergencies. Critical care. Intensive care. First aid ,Extreme Gradient Boosting (XGBoost) ,Intensive care unit ,Multiple organ failure ,Cohort ,Population study ,SOFA score ,Original Article ,Artificial intelligence ,10023 Institute of Intensive Care Medicine ,business ,Algorithm ,computer ,Predictive modelling - Abstract
Background : Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival probability. Machine learning (ML) techniques are attracting increased interest for the development of prediction models as they excel in the analysis of complex signals in data-rich environments such as critical care. Methods : We retrieved data on patients with COVID-19 admitted to an intensive care unit (ICU) between March and October 2020 from the RIsk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry. We applied the Extreme Gradient Boosting (XGBoost) algorithm to the data to predict as a binary outcome the increase or decrease in patients’ Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU admission. The model was iteratively cross-validated in different subsets of the study cohort. Results : The final study population consisted of 675 patients. The XGBoost model correctly predicted a decrease in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and an increase in the score in 210/290 (72%) patients. The area under the mean receiver operating characteristic curve for XGBoost was significantly higher than that for the logistic regression model {0.86 vs. 0.69, P
- Published
- 2021