Back to Search Start Over

Machine learning using the Extreme Gradient Boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients

Authors :
Marie M. Jeitziner
Iris Drvaric
Jan Wiegand
Abele Donati
Janina Apolo
Emanuele Rezoagli
Jesús Escós-Orta
Herminia Lozano-Gómez
Mirko Brenni
Giovanni Camen
Frank Hillgaertner
Sara Moccia
Antje Heise
Alexander Dullenkopf
Michael Stephan
Can Ince
Marcus Laube
Julien Marrel
Michele Bernardini
Barbara Lienhardt-Nobbe
Hernán Aguirre-Bermeo
Alberto Fogagnolo
Dorothea M. Heuberger
Severin Urech
Reto A. Schuepbach
Andrea Glotta
Samuele Ceruti
Isabelle Fleisch
Marc P. Michot
Alice Nova
Matthias P. Hilty
Tomislav Gaspert
Gianfilippo Gangitano
Savino Spadaro
Ivan Chau
Daniele Berardini
Tiziana Perin
Andrea Westphalen
Marie-Reine Losser
Hatem Ksouri
Marie-Hélène Perez
Theodoros Aslanidis
Christoph Haberthuer
Gerardo Vizmanos-Lamotte
Jorge Gámez-Zapata
Filippo Boroli
Adriana Lambert
Serge Grazioli
Petra Salomon
Christian Bürkle
Didier Naon
Philipp Bühler
Dawid L. Staudacher
Miodrag Filipovic
Hermann Redecker
Mario Alfaro-Farias
Massimo Antonelli
Rolf Ensner
Jerome Lavanchy
Lukas Merki
Roberto Ceriani
Anette Ristic
Chiara Cogliati
Reto Andreas Schüpbach
Daniela Selz
Begoña Zalba-Etayo
Anne-Sylvie Ramelet
Thierry Fumeaux
Andrea Carsetti
Peter Gerecke
Riccardo Colombo
Marilene Franchitti Laurent
Fabrizio Turrini
Tobias Wengenmayer
Tobias Welte
Philippe Guerci
Antonella Potalivo
Lucia Migliorelli
Barna Babik
Reza Nikandish
Pedro D. Wendel Garcia
Alberto Martínez
Maria Sole Simonini
Diederik Gommers
Xiana Taboada-Fraga
Jerome Pugin
Peter C. Rimensberger
Angela Algaba-Calderon
FriederikeMeyer zu Bentrup
Agios Pavlos
Thomas Tschoellitsch
Marianne Sieber
Karim Shaikh
Nuria Zellweger
Silvio Brugger
Geoffrey Jurkolow
Anja Baltussen Weber
Maria C. Martín-Delgado
Anita Korsós
Gian-Reto Kleger
Alexander Klarer
Emmanuel Novy
Diego Franch-Llasat
Adrian Tellez
Peter Schott
Jonathan Rilinger
Andreas Christ
Bernd Yuen
Jean-Christophe Laurent
Nadine Gehring
Pedro Castro
Sascha David
Francesca Facondini
Arantxa Lander-Azcona
Maria Grazia Bocci
Maddalena Alessandra Wu
Mallory Moret-Bochatay
Sara Cereghetti
Urs Pietsch
Martina Murrone
Gauthier Delahaye
Luca Romeo
Pascal Locher
Pedro David Wendel Garcia
Michael Sepulcri
Marija Jovic
Katharina Marquardt
Emanuele Frontoni
Patricia Fodor
Emanuele Catena
Tobias Hübner
Thomas Neff
Roger F. Lussman
Matteo Giacomini
Govind Oliver Sridharan
Beatrice Jenni-Moser
Jan Brem
Michael Studhalter
Elif Colak
Raquel Rodríguez-García
Silvia Fabbri
Jens Meier
Lina Petersen
Jonathan Montomoli
Ferran Roche-Campo
Klaus Stahl
Montomoli, J
Romeo, L
Moccia, S
Bernardini, M
Migliorelli, L
Berardini, D
Donati, A
Carsetti, A
Bocci, M
Wendel Garcia, P
Fumeaux, T
Guerci, P
Schupbach, R
Ince, C
Frontoni, E
Hilty, M
Alfaro-Farias, M
Vizmanos-Lamotte, G
Tschoellitsch, T
Meier, J
Aguirre-Bermeo, H
Apolo, J
Martinez, A
Jurkolow, G
Delahaye, G
Novy, E
Losser, M
Wengenmayer, T
Rilinger, J
Staudacher, D
David, S
Welte, T
Stahl, K
Pavlos, A
Aslanidis, T
Korsos, A
Babik, B
Nikandish, R
Rezoagli, E
Giacomini, M
Nova, A
Fogagnolo, A
Spadaro, S
Ceriani, R
Murrone, M
Wu, M
Cogliati, C
Colombo, R
Catena, E
Turrini, F
Simonini, M
Fabbri, S
Potalivo, A
Facondini, F
Gangitano, G
Perin, T
Grazia Bocci, M
Antonelli, M
Gommers, D
Rodriguez-Garcia, R
Gamez-Zapata, J
Taboada-Fraga, X
Castro, P
Tellez, A
Lander-Azcona, A
Escos-Orta, J
Martin-Delgado, M
Algaba-Calderon, A
Franch-Llasat, D
Roche-Campo, F
Lozano-Gomez, H
Zalba-Etayo, B
Michot, M
Klarer, A
Ensner, R
Schott, P
Urech, S
Zellweger, N
Merki, L
Lambert, A
Laube, M
Jeitziner, M
Jenni-Moser, B
Wiegand, J
Yuen, B
Lienhardt-Nobbe, B
Westphalen, A
Salomon, P
Drvaric, I
Hillgaertner, F
Sieber, M
Dullenkopf, A
Petersen, L
Chau, I
Ksouri, H
Sridharan, G
Cereghetti, S
Boroli, F
Pugin, J
Grazioli, S
Rimensberger, P
Burkle, C
Marrel, J
Brenni, M
Fleisch, I
Lavanchy, J
Perez, M
Ramelet, A
Weber, A
Gerecke, P
Christ, A
Ceruti, S
Glotta, A
Marquardt, K
Shaikh, K
Hubner, T
Neff, T
Redecker, H
Moret-Bochatay, M
Bentrup, F
Studhalter, M
Stephan, M
Brem, J
Gehring, N
Selz, D
Naon, D
Kleger, G
Pietsch, U
Filipovic, M
Ristic, A
Sepulcri, M
Heise, A
Franchitti Laurent, M
Laurent, J
Schuepbach, R
Heuberger, D
Buhler, P
Brugger, S
Fodor, P
Locher, P
Camen, G
Gaspert, T
Jovic, M
Haberthuer, C
Lussman, R
Colak, E
Biomedical Engineering and Physics
ACS - Microcirculation
Translational Physiology
ACS - Atherosclerosis & ischemic syndromes
Graduate School
AII - Infectious diseases
University of Zurich
Source :
Journal of Intensive Medicine, Journal of Intensive Medicine, vol. 1, no. 2, pp. 110-116, Journal of Intensive Medicine, 1(2), 110-116. Elsevier BV, Journal of Intensive Medicine, Vol 1, Iss 2, Pp 110-116 (2021)
Publication Year :
2021
Publisher :
Chinese Medical Association. Published by Elsevier B.V., 2021.

Abstract

Background : Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival probability. Machine learning (ML) techniques are attracting increased interest for the development of prediction models as they excel in the analysis of complex signals in data-rich environments such as critical care. Methods : We retrieved data on patients with COVID-19 admitted to an intensive care unit (ICU) between March and October 2020 from the RIsk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry. We applied the Extreme Gradient Boosting (XGBoost) algorithm to the data to predict as a binary outcome the increase or decrease in patients’ Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU admission. The model was iteratively cross-validated in different subsets of the study cohort. Results : The final study population consisted of 675 patients. The XGBoost model correctly predicted a decrease in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and an increase in the score in 210/290 (72%) patients. The area under the mean receiver operating characteristic curve for XGBoost was significantly higher than that for the logistic regression model {0.86 vs. 0.69, P

Details

Language :
English
ISSN :
2667100X and 20970250
Database :
OpenAIRE
Journal :
Journal of Intensive Medicine
Accession number :
edsair.doi.dedup.....a6b417a30963d586082f499aea0ec81f