7 results on '"Mohamed Boukhicha"'
Search Results
2. rf Quantum Capacitance of the Topological Insulator Bi2Se3 in the Bulk Depleted Regime for Field-Effect Transistors
- Author
-
E. Bocquillon, Bernard Plaçais, T. Taniguchi, Kenji Watanabe, A. Inhofer, Mohamed Boukhicha, J.-M. Berroir, José Palomo, Badih A. Assaf, I. Estève, Gwendal Fève, and J. Duffy
- Subjects
Materials science ,business.industry ,Dirac (software) ,Gate dielectric ,General Physics and Astronomy ,02 engineering and technology ,Dielectric ,021001 nanoscience & nanotechnology ,01 natural sciences ,Capacitance ,law.invention ,Quantum capacitance ,Capacitor ,law ,Topological insulator ,0103 physical sciences ,Optoelectronics ,Field-effect transistor ,010306 general physics ,0210 nano-technology ,business - Abstract
A metal-dielectric topological-insulator capacitor device based on hexagonal-boron-nitrate-(h-BN) encapsulated CVD-grown Bi 2 Se 3 is realized and investigated in the radio-frequency regime. The rf quantum capacitance and device resistance are extracted for frequencies as high as 10 GHz and studied as a function of the applied gate voltage. The superior quality h-BN gate dielectric combined with the optimized transport characteristics of CVD-grown Bi 2 Se 3 (n ∼ 10 18 cm −3 in 8 nm) on h-BN allow us to attain a bulk depleted regime by dielectric gating. A quantum-capacitance minimum and a linear variation of the capacitance with the chemical potential are observed revealing a Dirac regime. The topological surface state in proximity to the gate is seen to reach charge neutrality, but the bottom surface state remains charged and capacitively coupled to the top via the insulating bulk. Our work paves the way toward implementation of topological materials in rf devices.
- Published
- 2018
- Full Text
- View/download PDF
3. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals
- Author
-
Bernard Plaçais, Léonard Schué, I. Stenger, Mohamed Boukhicha, Bruno Berini, Julien Barjon, Annick Loiseau, Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'étude des microstructures [Châtillon] (LEM - ONERA - CNRS), Centre National de la Recherche Scientifique (CNRS)-ONERA, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE08-0018,GoBN,Hétérostructures de graphènes blanc et noir(2014), European Project: 696656,H2020,H2020-Adhoc-2014-20,GrapheneCore1(2016), Université Paris Saclay (COmUE)-ONERA-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ONERA-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), ONERA-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), ONERA - The French Aerospace Lab [Châtillon], and Université Paris Saclay (COmUE)-ONERA
- Subjects
Materials science ,FOS: Physical sciences ,Nanotechnology ,02 engineering and technology ,Nitride ,01 natural sciences ,law.invention ,symbols.namesake ,law ,0103 physical sciences ,General Materials Science ,Thin film ,010306 general physics ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Condensed Matter - Materials Science ,Thin layers ,Graphene ,business.industry ,Mechanical Engineering ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Mechanics of Materials ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,van der Waals force ,0210 nano-technology ,business ,Raman spectroscopy ,Raman scattering - Abstract
Hexagonal boron nitride (hBN) has recently gained a strong interest as a strategic component in engineering van der Waals heterostructures built with two dimensional crystals such as graphene. This work reports micro-Raman measurements on hBN flakes made of a few atomic layers, prepared by mechanical exfoliation. The temperature dependence of the Raman scattering in hBN is investigated first such as to define appropriate measurements conditions suitable for thin layers avoiding undesirable heating induced effects. We further focus on the low frequency Raman mode corresponding to the rigid shearing oscillation between adjacent layers, found to be equal to 52.5 cm-1 in bulk hBN. For hBN sheets with thicknesses below typically 4 nm, the frequency of this mode presents discrete values, which are found to decrease down to 46.0(5) cm-1 for a three-layer hBN, in good agreement with the linear-chain model. This makes Raman spectroscopy a relevant tool to quantitatively determine the number of layers in ultra thin hBN sheets, below 8L.
- Published
- 2017
- Full Text
- View/download PDF
4. Contact gating at GHz frequency in graphene
- Author
-
Quentin Wilmart, M. Rosticher, N. Garroum, Gwendal Fève, Bernard Plaçais, Jean-Marc Berroir, A. Inhofer, Mohamed Boukhicha, Wei Yang, P. Morfin, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Statistique de l'ENS (LPS), Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,Transconductance ,FOS: Physical sciences ,02 engineering and technology ,Gating ,Hardware_PERFORMANCEANDRELIABILITY ,Bioinformatics ,01 natural sciences ,Article ,law.invention ,symbols.namesake ,Charge-carrier density ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Hardware_INTEGRATEDCIRCUITS ,Electronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Multidisciplinary ,Condensed Matter - Mesoscale and Nanoscale Physics ,Graphene ,business.industry ,Fermi level ,Transistor ,Electrical engineering ,021001 nanoscience & nanotechnology ,Scaling limit ,Modulation ,symbols ,Enhanced Data Rates for GSM Evolution ,0210 nano-technology ,business ,Communication channel - Abstract
The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates.
- Published
- 2016
- Full Text
- View/download PDF
5. Anodic bonded 2D semiconductors: from synthesis to device fabrication
- Author
-
Zhesheng Chen, Abhay Shukla, Mohamed Boukhicha, Johan Biscaras, Karim Gacem, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Lanzhou Univ, Sch Nucl Sci & Technol, Labex Matisse, ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
GRAPHENE ,Materials science ,Fabrication ,PHASE ,GASE ,Bioengineering ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,symbols.namesake ,Condensed Matter::Materials Science ,Optical microscope ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,law ,HETEROSTRUCTURES ,General Materials Science ,CRYSTAL-STRUCTURE ,Electrical and Electronic Engineering ,Graphene ,business.industry ,Mechanical Engineering ,Transistor ,ELECTRONIC-BAND ,Heterojunction ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,RAMAN-SPECTRUM ,Semiconductor ,Mechanics of Materials ,Anodic bonding ,INSE ,TRANSISTORS ,symbols ,Optoelectronics ,0210 nano-technology ,business ,Raman spectroscopy ,SCANNING PHOTOCURRENT MICROSCOPY - Abstract
International audience; Two-dimensional semiconductors are increasingly relevant for emergent applications and devices, notably for hybrid heterostructures with graphene. We fabricate few-layer, large-area (a few tens of microns across) samples of the III-VI semiconductors GaS, GaSe and InSe using the anodic bonding method and characterize them by simultaneous use of optical microscopy, atomic force microscopy and Raman spectroscopy. Two-terminal devices with a gate are constructed to show the feasibility of applications based on these.
- Published
- 2013
- Full Text
- View/download PDF
6. Anharmonic phonons in few layer MoS$_2$: Raman spectroscopy of ultra low energy compression and shear modes
- Author
-
Marie-Aude Méasson, Matteo Calandra, Abhay Shukla, Mohamed Boukhicha, Ophelie Lancry, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), HORIBA France SAS [Villeneuve d'Ascq], HORIBA Scientific [France], Labex Matisse, ANR-11-IDEX-0004,SUPER,MATerials, InterfaceS, Surfaces, Environment(2011), ANR-11-IDEX-0004-02/10-LABX-0067,MATISSE,MATerials, InterfaceS, Surfaces, Environment(2011), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
GRAPHENE ,Nanostructure ,Materials science ,Phonon ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,symbols.namesake ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,Optics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,PACS : 63 . 20 . dk, 63 . 20 . Ry, 63 . 22 . − m ,Molybdenum disulfide ,Condensed Matter - Materials Science ,Condensed matter physics ,Scattering ,business.industry ,Anharmonicity ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Coupling (probability) ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,chemistry ,TRANSISTORS ,symbols ,0210 nano-technology ,business ,Raman spectroscopy ,Energy (signal processing) - Abstract
Molybdenum disulfide (MoS$_2$) is a promising material for making two-dimensional crystals and flexible electronic and optoelectronic devices at the nanoscale. MoS$_2$ flakes can show high mobilities and have even been integrated in nanocircuits . A fundamental requirement for such use is efficient thermal transport. Electronic transport generates heat which needs to be evacuated, more crucially so in nanostructures. Anharmonic phonon-phonon scattering is the dominant intrinsic limitation to thermal transport in insulators. Here, using appropriate samples, ultra-low energy Raman spectroscopy and first principles calculations, we provide a full experimental and theoretical description of compression and shear modes of few-layer (FL) MoS$_2$. We demonstrate that the compression modes are strongly anharmonic with a marked enhancement of phonon-phonon scattering as the number of layers is reduced, most likely a general feature of nanolayered materials with weak interlayer coupling., 6 pages, 5 figures
- Published
- 2013
- Full Text
- View/download PDF
7. High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation
- Author
-
Takashi Taniguchi, Bernard Plaçais, Emmanuel Baudin, Quentin Wilmart, Mohamed Boukhicha, Vincent Bouchiat, Emiliano Pallecchi, Kenji Watanabe, Erwann Bocquillon, Gwendal Fève, José Palomo, Holger Graef, M. Rosticher, Jean-Marc Berroir, David Mele, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Physique Mésoscopique, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), National Institute for Materials Science (NIMS), Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Nano-Optique, Carbon - IEMN (CARBON - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), The research leading to these results have received partial funding from the European UnionHorizon 2020 research and innovation programme under grant No. 785219 'Graphene Core 2', and fromthe ANR-14-CE08-018-05 'GoBN'. The work of Q.W. was supported by a DGA-MRIS scholarship, ANR-14-CE08-0018,GoBN,Hétérostructures de graphènes blanc et noir(2014), European Project: 785219,H2020,GrapheneCore2(2018), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Systèmes hybrides de basse dimensionnalité (HYBRID), Carbon-IEMN (CARBON-IEMN), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
- Subjects
Materials science ,Terahertz radiation ,Physics::Optics ,02 engineering and technology ,Substrate (electronics) ,lcsh:Technology ,7. Clean energy ,01 natural sciences ,law.invention ,lcsh:Chemistry ,Graphene transistor ,[SPI]Engineering Sciences [physics] ,Dirac pinch-off ,law ,0103 physical sciences ,contact gating ,General Materials Science ,010306 general physics ,lcsh:QH301-705.5 ,Instrumentation ,Fluid Flow and Transfer Processes ,[PHYS]Physics [physics] ,lcsh:T ,Scattering ,business.industry ,Graphene ,Oscillation ,Process Chemistry and Technology ,Velocity saturation ,Transistor ,General Engineering ,021001 nanoscience & nanotechnology ,velocity saturation ,lcsh:QC1-999 ,Computer Science Applications ,high-frequency ,lcsh:Biology (General) ,lcsh:QD1-999 ,lcsh:TA1-2040 ,Optoelectronics ,Field-effect transistor ,lcsh:Engineering (General). Civil engineering (General) ,0210 nano-technology ,business ,lcsh:Physics - Abstract
The current understanding of physical principles governing electronic transport in graphene field effect transistors (GFETs) has reached a level where we can model quite accurately device operation and predict intrinsic frequency limits of performance. In this work, we use this knowledge to analyze DC and RF transport properties of bottom-gated graphene on boron nitride field effect transistors exhibiting pronounced velocity saturation by substrate hyperbolic phonon polariton scattering, including Dirac pinch-off effect. We predict and demonstrate a maximum oscillation frequency exceeding 20  , GHz . We discuss the intrinsic 0.1  , THz limit of GFETs and envision plasma resonance transistors as an alternative for sub-THz narrow-band detection.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.