1. Consistent Depth Video Segmentation Using Adaptive Surface Models
- Author
-
Farzad Husain, Babette Dellen, Carme Torras, European Commission, Ministerio de Ciencia e Innovación (España), Consejo Superior de Investigaciones Científicas (España), Institut de Robòtica i Informàtica Industrial, and Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
- Subjects
Surface (mathematics) ,Computer science ,Surface fitting ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Point cloud ,Range data ,Scale-space segmentation ,computer vision ,Motion ,Segmentation ,Range (statistics) ,Computer vision ,Electrical and Electronic Engineering ,business.industry ,Shape ,Pattern recognition ,Image segmentation ,Computer Science Applications ,Human-Computer Interaction ,Control and Systems Engineering ,Computer Science::Computer Vision and Pattern Recognition ,Artificial intelligence ,Range segmentation ,Informàtica::Robòtica [Àrees temàtiques de la UPC] ,business ,Pattern recognition::Computer vision [Classificació INSPEC] ,Software ,Information Systems - Abstract
We propose a new approach for the segmentation of 3-D point clouds into geometric surfaces using adaptive surface models. Starting from an initial configuration, the algorithm converges to a stable segmentation through a new iterative split-And-merge procedure, which includes an adaptive mechanism for the creation and removal of segments. This allows the segmentation to adjust to changing input data along the movie, leading to stable, temporally coherent, and traceable segments. We tested the method on a large variety of data acquired with different range imaging devices, including a structured-light sensor and a time-of-flight camera, and successfully segmented the videos into surface segments. We further demonstrated the feasibility of the approach using quantitative evaluations based on ground-truth data., This research is partially funded by the EU project IntellAct (FP7-269959), the Grup consolidat 2009 SGR155, the project PAU+ (DPI2011-27510), and the CSIC project CINNOVA (201150E088). B. Dellen acknowledges support from the Spanish Ministry of Science and Innovation through a Ramon y Cajal program.
- Published
- 2015
- Full Text
- View/download PDF