Back to Search Start Over

Action recognition based on efficient deep feature learning in the spatio-temporal domain

Authors :
Babette Dellen
Farzad Husain
Carme Torras
Consejo Superior de Investigaciones Científicas (España)
Ministerio de Economía y Competitividad (España)
Institut de Robòtica i Informàtica Industrial
Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname, Recercat. Dipósit de la Recerca de Catalunya, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2016
Publisher :
Institute of Electrical and Electronics Engineers, 2016.

Abstract

Hand-crafted feature functions are usually designed based on the domain knowledge of a presumably controlled environment and often fail to generalize, as the statistics of real-world data cannot always be modeled correctly. Data-driven feature learning methods, on the other hand, have emerged as an alternative that often generalize better in uncontrolled environments. We present a simple, yet robust, 2-D convolutional neural network extended to a concatenated 3-D network that learns to extract features from the spatio-temporal domain of raw video data. The resulting network model is used for content-based recognition of videos. Relying on a 2-D convolutional neural network allows us to exploit a pretrained network as a descriptor that yielded the best results on the largest and challenging ILSVRC-2014 dataset. Experimental results on commonly used benchmarking video datasets demonstrate that our results are state-of-the-art in terms of accuracy and computational time without requiring any preprocessing (e.g., optic flow) or a priori knowledge on data capture (e.g., camera motion estimation), which makes it more general and flexible than other approaches. Our implementation is made available.<br />This research is partially funded by the CSIC project TextilRob (201550E028), and the project RobInstruct (TIN2014-58178-R).

Details

Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname, Recercat. Dipósit de la Recerca de Catalunya, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.doi.dedup.....0a90982cd0f64af9fbebeca49e985487