Patrick H. Maxwell, Thomas G. Smith, Chun Liu, Melanie J. Percy, C J McNamara, Christopher W. Pugh, Jerome Tremblay Brooks, Peter J. Ratcliffe, Nick P. Talbot, George M. Balanos, D.M. Layton, D L Leedham, M Treacy, Peter A. Robbins, Terence R.J. Lappin, Mary Frances McMullin, and Barnes, P
Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF., Editors' Summary Background. Human cells (like those of other multicellular animals) use oxygen to provide the energy needed for daily life. Having not enough oxygen is a problem, but having too much is also dangerous because it damages proteins, DNA, and other large molecules that keep cells functioning. Consequently, the physiological systems—including the heart, lungs, and circulation—work together to balance oxygen supply and demand throughout the body. When oxygen is limiting (a condition called hypoxia), as happens at high altitudes, the cellular oxygen supply is maintained by increasing the heart rate, increasing the speed and depth of breathing (hyperventilation), constricting the blood vessels in the lung (pulmonary vasoconstriction), and increasing the number of oxygen-carrying cells in the blood. All these physiological changes increase the amount of oxygen that can be absorbed from the air, but how they are regulated is poorly understood. By contrast, researchers know quite a bit about how individual cells respond to hypoxia. When oxygen is limited, a protein called hypoxia-inducible factor (or HIF) activates a number of target proteins that help the cell get enough oxygen (for example, proteins that stimulate the growth of new blood vessels). When there is plenty of oxygen, another protein, called von Hippel–Lindau tumor suppressor (abbreviated VHL), rapidly destroys HIF. Recently, researchers discovered that a genetic condition called Chuvash polycythaemia, characterised by the overproduction of red blood cells, is caused by a specific defect in VHL that reduces its ability to destroy HIF. As a result, the expression of certain HIF target proteins is increased even when oxygen levels are normal. Why Was This Study Done? Chuvash polycythaemia is very rare, and so far little is known about how this genetic abnormality affects the physiology and long-term health of patients. By studying heart and lung function in patients with Chuvash polycythaemia, the researchers involved in this study hoped to discover more about the health consequences of the condition and to find out whether the VHL–HIF system controls systemic responses to hypoxia as well as cellular responses. What Did the Researchers Do and Find? The researchers recruited and studied three patients with Chuvash polycythaemia, and, as controls for the comparison, several normal individuals and patients with an unrelated form of polycythaemia. They then measured how the lungs and hearts of these people reacted to mild hypoxia (similar to that experienced on commercial air flights) and moderate hypoxia (equiv alent to being on the top of an Alpine peak). They found that patients with Chuvash polycythaemia naturally breathe slightly quicker and deeper than normal individuals, and that their breathing rate increased dramatically and abnormally when oxygen was reduced. They also found that at normal oxygen levels the pulmonary blood vessels of these patients were more constricted than those of control individuals, and that they reacted more extremely to hypoxia. Similarly, the normal heart rate of the patients was slightly higher than that of the controls and increased much more in response to mild hypoxia. What Do These Findings Mean? The physiological differences measured by the researchers between Chuvash polycythaemia patients and control individuals are similar to the adaptations seen in people traveling to high altitudes where oxygen is limited. Thus, the VHL–HIF proteins may regulate the response to different oxygen concentrations both in individual cells and at the systemic level, although more physiological studies are needed to confirm this. Because the pulmonary blood vessels of patients with Chuvash polycythaemia are always abnormally constricted, and even more so when oxygen is limited, these people should avoid living at high altitude and should minimise air travel, suggest the researchers. The increased blood pressure in their lungs (pulmonary hypertension) could conceivably cause heart failure under such circumstances. Finally, this study has implications for the development of drugs directed at the VHL–HIF system. Agents are currently being designed to promote the development of new blood vessels after strokes or heart attacks by preventing the destruction of HIF, but based on the findings here such agents might have undesirable physiological affects. Conversely, HIF inhibitors (which act as anti-cancer reagents by increasing hypoxia in the centre of tumors and so inhibiting their growth) might be useful in the treatment of pulmonary hypertension. Additional Information. Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030290. • Online Mendelian Inheritance in Man page on Chuvash polycythaemia • Information from the VHL Family Alliance on von Hippel–Lindau disease, including information on Chuvash polycythaemia • Wikipedia page on polycythaemia and von Hippel–Lindau disease (note: Wikipedia is a free online encyclopaedia that anyone can edit), Physiological study of patients with Chuvash polycythemia (caused by mutation of VHL) reveals characteristics similar to those associated with acclimatization to the hypoxia of high altitude.