1. Preliminary Observations on Skeletal Muscle Adaptation and Plasticity in Homer 2-/- Mice
- Author
-
Annalisa Bernareggi, Paul F. Worley, Katharina Block, Sandra Furlan, Michele Salanova, Gabor Trautmann, Paola Lorenzon, Pompeo Volpe, Sandra Zampieri, Barbara Ravara, Alessandra Bosutti, Gabriele Massaria, Marina Sciancalepore, Dieter Blottner, Lorenzon, Paola, Furlan, Sandra, Ravara, Barbara, Bosutti, Alessandra, Massaria, Gabriele, Bernareggi, Annalisa, Sciancalepore, Marina, Trautmann, Gabor, Block, Katharina, Blottner, Dieter, Worley, Paul F., Zampieri, Sandra, Salanova, Michele, and Volpe, Pompeo
- Subjects
Soleus muscle ,Denervation ,neuromuscular junction ,Endocrinology, Diabetes and Metabolism ,Skeletal muscle adaptation ,Skeletal muscle ,Flexor digitorum brevis muscle ,Context (language use) ,Biology ,musculoskeletal system ,Biochemistry ,Microbiology ,Article ,Neuromuscular junction ,QR1-502 ,Homer 2 ,atrophy ,skeletal muscle ,Cell biology ,Extensor digitorum longus muscle ,medicine.anatomical_structure ,medicine ,Molecular Biology - Abstract
Homer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2-/- mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR (Reverse Transcription PCR), confocal immunofluorescence, and electrophysiology. Morphometry shows that Soleus muscle (SOL), at variance with Extensor digitorum longus muscle (EDL) and Flexor digitorum brevis muscle (FDB), displays sizable reduction of fibre cross-sectional area compared to the WT counterparts. In SOL of Homer 2-/- mice, quantitative RT-PCR indicated the upregulation of Atrogin-1 and Muscle ring finger protein 1 (MuRF1) genes, and confocal immunofluorescence showed the decrease of neuromuscular junction (NMJ) Homer content. Electrophysiological measurements of isolated FDB fibres from Homer 2-/- mice detected the exclusive presence of the adult ε-nAChR isoform excluding denervation. As for NMJ morphology, data were not conclusive, and further work is needed to ascertain whether the null Homer 2 phenotype induces any endplate remodelling. Within the context of adaptation and plasticity, the present data show that Homer 2 is a co-regulator of the normotrophic status in a muscle specific fashion.
- Published
- 2021