Jörg C. Schmidt, Céline Ducournau, Emmanuel Cornillot, Terry K. Smith, Isabelle Dimier-Poisson, Virginie Bres, Louis Lantier, Stephane Delbecq, Françoise Debierre-Grockiego, Ralph T. Schwarz, The Wellcome Trust, University of St Andrews. School of Biology, University of St Andrews. Biomedical Sciences Research Complex, Infectiologie et Santé Publique (UMR ISP), Institut National de la Recherche Agronomique (INRA)-Université de Tours, Biomedical Sciences Research Complex [St Andrews, Scotland] (BSRC), University of St Andrews [Scotland], Université de Montpellier (UM), Philipps University of Marburg, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Computational Biology Institute (IBC), Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM), CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Partenariat Hubert Curien PHC PROCOPE 24931RE, German Research Foundation (DFG) SCHW 296/18-2, Debierre-Grockiego, Françoise, Institut National de la Recherche Agronomique (INRA)-Université de Tours (UT), Philipps Universität Marburg = Philipps University of Marburg, Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and ProdInra, Migration
This work was supported by the the University of Tours (to IDP and FDG), the University of Montpellier (to SD and EC), the Deutsche Forschungsgemeinschaft (to RTS), the Wellcome Trust project grant 093228 (to TKS) and the Campus France/DAAD PHC PROCOPE 24931RE (to RTS and EC). The funding source has no involvement in the conduct of the research and preparation of the article. Glycosylphosphatidylinositols (GPIs) are glycolipids described as toxins of protozoan parasites due to their inflammatory properties in mammalian hosts characterized by the production of interleukin (IL)-1, IL-12 and tumor necrosis factor (TNF)-α. In the present work, we studied the cytokines produced by antigen presenting cells in response to ten different GPI species extracted from Babesia divergens, responsible for babesiosis. Interestingly, B. divergens GPIs induced the production of anti-inflammatory cytokines (IL-2, IL-5) and of the regulatory cytokine IL-10 by macrophages and dendritic cells. In contrast to all protozoan GPIs studied until now, GPIs from B. divergens did not stimulate the production of TNF-α and IL-12, leading to a unique Th1/Th2 profile. Analysis of the carbohydrate composition of the B. divergens GPIs indicated that the di-mannose structure was different from the evolutionary conserved tri-mannose structure, which might explain the particular cytokine profile they induce. Expression of major histocompatibility complex (MHC) molecules on dendritic cells and apoptosis of mouse peritoneal cells were also analysed. B. divergens GPIs did not change expression of MHC class I, but decreased expression of MHC class II at the cell surface, while GPIs slightly increased the percentages of apoptotic cells. During pathogenesis of babesiosis, the inflammation-coagulation auto-amplification loop can lead to thrombosis and the effect of GPIs on coagulation parameters was investigated. Incubation of B. divergens GPIs with rat plasma ex vivo led to increase of fibrinogen levels and to prolonged activated partial thromboplastin time, suggesting a direct modulation of the extrinsic coagulation pathway by GPIs. Publisher PDF