Guy Lippens, Alain Sillen, Jean-Michel Wieruszeski, Arnaud Leroy, Isabelle Landrieu, Nathalie Sibille, Barbara Mulloy, Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Laboratoire de Biochimie Appliquée, Université Paris-Sud - Paris 11 (UP11), National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare Products Regulatory Agency (MHRA), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions. The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions. The neuronal Tau protein is involved in stabilizing microtubules but is also the major component of the paired helical filaments (PHFs), the intracellular aggregates that characterize Alzheimer's disease (AD) in neurons. In vitro, Tau can be induced to form AD-like aggregates by adding polyanions such as heparin. While previous studies have identified the microtubule binding repeats (MTBRs) as the major player in Tau aggregation, the fact that the full-length protein does not aggregate by itself indicates the presence of inhibitory factors. Charge and conformational changes are of uttermost importance near the second (R2) and third (R3) MTBR that are thought to be involved directly in the nucleation of the aggregation. Recently, the positively charged regions flanking the MTBR were proposed to inhibit PHF assembly, where hyperphosphorylation neutralizes these basic inhibitory domains, enabling Tau-Tau interactions. Here we present results of an NMR study on the interaction between intact full-length Tau and small heparin fragments of well-defined size, under conditions where no aggregation occurs. Our findings reveal (i) micromolar affinity of heparin to residues in R2 and R3, (ii) two zones of strong interaction within the positively charged inhibitory regions flanking the MTBR, and (iii) another interaction site upstream of the two inserts encoded by exons 2 and 3. Three-dimensional heteronuclear NMR experiments demonstrate that the interaction with heparin induces beta-strand structure in several regions of Tau that might act as nucleation sites for its aggregation but indicate as well alpha-helical structure in regions outside the core of PHF. In the PHF, the residues outside of the core maintain sufficient mobility for NMR detection and recover their unbound chemical shift values after an overnight incubation at 37 degrees C with heparin. Heparin thus becomes integrated into the rigid core region of the PHF, probably providing the charge compensation for the lysine-rich stretches that form upon the in-register, parallel stacking of the repeat regions.