1. Assessing the Impact of an EV Battery Swapping Station on the Reliability of Distribution Systems.
- Author
-
Zeng, Bo, Luo, Yangfan, Zhang, Changhao, and Liu, Yixian
- Subjects
RELIABILITY in engineering ,MONTE Carlo method ,LATIN hypercube sampling ,ELECTRIC fault location ,TRAFFIC flow ,ELECTRIC batteries - Abstract
This paper proposes a comprehensive methodological framework to investigate the potential role of the grid-connected battery swapping station (BSS) with vehicle-to-grid (V2G) capability in improving the reliability of supply in future distribution networks. For this aim, we first develop an empirical model for describing the energy demand of electric vehicles (EVs) and their resultant available generation capacity (AGC) that can be utilized for BSS operation. Then, on this basis, a quantitative method to quantify the effect of grid-connected BSS on distribution system reliability is proposed. In order to capture the uncertainties associated with EV users' behaviors, Latin Hypercube Sampling (LHS) methods were utilized to obtain the time series of the BSS traffic flow and initial State of Charge (SOC) of each EV battery, according to the probability distribution of corresponding uncertain factors whose statistics are obtained from real-world historical data. Compared with existing works in this research field, the main contributions of this paper are threefold. (i) A comprehensive and efficient method to assess the reliability benefits of BSS with an explicit consideration of BSS characteristics (including physical structure, charging strategy, and swapping model) is proposed, which is in contrast to most of the extant studies that only focus on the EV fast-charging paradigm and thus provide a practical tool to analyze the potential value of BSS resources in future distribution systems. (ii) The randomness of EV user behaviors in BSS operation is explicitly modeled and considered. (iii) The LHS-based sequential simulation is used to improve the accuracy and convergence performance of the evaluation, as compared to the traditional Sequential Monte Carlo Simulation (SMCS) method. To verify the effectiveness of the proposed approach, numerical studies are conducted based on a modified IEEE 33-bus distribution network. The simulation results show that with V2G capabilities, BSS can improve reliability to a certain extent and reduce the adverse impact on the reliability of the distribution network. In addition, EV resources should be orderly managed and exploited; otherwise, uncoordinated charging activities could impose a negative impact on the reliability performance of distribution networks. Finally, it is also shown that under the same sampling time, LHS-based sequential simulation could be better than SMCS in the accuracy and convergence speed of the procedure. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF