1. Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models
- Author
-
Sylvain Charron, Guillaume Turc, Jean-Claude Baron, Joseph Benzakoun, Bertrand Thirion, Wagih Ben Hassen, Gregoire Boulouis, Catherine Oppenheim, Olivier Naggara, Laurence Legrand, Institut de psychiatrie et neurosciences de Paris (IPNP - U1266 Inserm), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), GHU Paris Psychiatrie et Neurosciences, Université de Paris - UFR Médecine Paris Centre [Santé] (UP Médecine Paris Centre), Université de Paris (UP), Modelling brain structure, function and variability based on high-field MRI data (PARIETAL), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), UFR Médecine [Santé] - Université Paris Cité (UFR Médecine UPCité), Université Paris Cité (UPCité), Service NEUROSPIN (NEUROSPIN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Male ,Clinical Decision-Making ,030204 cardiovascular system & hematology ,Machine learning ,computer.software_genre ,Machine Learning ,03 medical and health sciences ,0302 clinical medicine ,Predictive Value of Tests ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Humans ,Medicine ,Acute ischemic stroke ,Stroke ,Aged ,Ischemic Stroke ,Retrospective Studies ,Neuroradiology ,Aged, 80 and over ,business.industry ,Penumbra ,Brain ,Original Articles ,Middle Aged ,Prognosis ,medicine.disease ,Patient management ,Diffusion Magnetic Resonance Imaging ,Neurology ,Infarction ,Reperfusion ,Ischemic stroke ,Female ,Neurology (clinical) ,Artificial intelligence ,Treatment decision making ,Cardiology and Cardiovascular Medicine ,Outcome prediction ,business ,computer ,030217 neurology & neurosurgery ,Follow-Up Studies - Abstract
Machine Learning (ML) has been proposed for tissue fate prediction after acute ischemic stroke (AIS), with the aim to help treatment decision and patient management. We compared three different ML models to the clinical method based on diffusion-perfusion thresholding for the voxel-based prediction of final infarct, using a large MRI dataset obtained in a cohort of AIS patients prior to recanalization treatment. Baseline MRI (MRI0), including diffusion-weighted sequence (DWI) and Tmax maps from perfusion-weighted sequence, and 24-hr follow-up MRI (MRI24h) were retrospectively collected in consecutive 394 patients AIS patients (median age = 70 years; final infarct volume = 28mL). Manually segmented DWI24h lesion was considered the final infarct. Gradient Boosting, Random Forests and U-Net were trained using DWI, apparent diffusion coefficient (ADC) and Tmax maps on MRI0 as inputs to predict final infarct. Tissue outcome predictions were compared to final infarct using Dice score. Gradient Boosting had significantly better predictive performance (median [IQR] Dice Score as for median age, maybe you can replace the comma with an equal sign for consistency 0.53 [0.29–0.68]) than U-Net (0.48 [0.18–0.68]), Random Forests (0.51 [0.27–0.66]), and clinical thresholding method (0.45 [0.25–0.62]) ( P
- Published
- 2021